Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность растворов солей в воде

    Примечание. В табл. VI—XXI плотность растворов солей отнесена к плотности воды при 4° С. [c.243]

    Образовавшийся 1-нафтиламин отделяют от раствора солей простым отстаиванием в воронках при 60—65 °С. При этой температуре плотность раствора солей равна 1,3 г/см , а плотность органического слоя составляет 1,1 г/см . При отстаивании, кроме этих двух слоев, отделяется небольшое количество промежуточного слоя (эмульсия 1-нафтиламина в растворе солей). Отделившийся 1-нафтиламин 2 раза промывают трех-четырех-кратным количеством горячей воды. Каждый раз после промывки 1-нафтиламин отстаивается от воды, причем в этом случае он переходит в нижний слой. [c.245]


    По окончании реакции массу передают в делительную воронку и расслаивают при 60-65° С (при этой температуре плотность органического слоя 1,100 г/см , а плотность раствора солей 1,300 г/см ). Отделившийся 1-нафтиламин промывают горячей водой и перегоняют в вакууме. [c.75]

    Плотность растворов солей в воде [c.18]

    Первый график снизу — для плотности растворов р. Плотность растворов солей больше плотности воды, так как все эти соли тяжелее воды. Плотности соли и раствора связаны линейной зависимостью, что представляется вполне естественным. Удивительно, пожалуй, что прямая — если ее продолжить — не попадает в начало координат. Она пересекает ось абсцисс при значениях М = 18-ь20. Тут уместно вспомнить, что для воды М = 18. Значит, водный раствор соли — это механическая смесь соли и воды, а не химическое [c.23]

    Построение калибровочного графика. В пять мерных колб емкостью 50 мл наливают 0,5 2,0 3,0 4,0 5,0 мл стандартного раствора соли железа, добавляют 1 мл азотной кислоты (1 1), 5 мл 10%-ного раствора роданида калия и доводят объемы растворов водой до метки. Оптическую плотность растворов измеряют на фотоколориметре ФЭК-М, с синим светофильтром в кювете с толщиной слоя 10 мм. [c.105]

    Нафтеновые кислоты — малолетучие, маслянистые жидкости плотностью 0,96—1,0 с резким неприятным запахом. Они не растворяются в воде, но легко растворимы в нефтепродуктах, бензоле, спиртах и эфирах. Содержание нафтеновых кислот в нефтяных фракциях принято характеризовать кислотными числами, т. е. числом миллиграммов едкого кали, расходуемого на нейтрализацию 1 г вещества в спирто-бензольном растворе в присутствии фенолфталеина. Нафтеновые кислоты широко применяются в технике для пропитки шпал, при регенерации каучука из вулканизированных изделий, как заменители жирных кислот в производстве мыла и как антисептические средства для борьбы с гнилостными грибками. Металлические соли нафтеновых кислот, в частности кальциевые, используются в производстве консистентных смазок. Для механизмов, работающих под большим давлением (например, планетарных шестерен задней оси автомобиля), готовят смазки из нафтената свинца, серы и минерального масла. [c.31]

    Для малого количества жидких нефтепродуктов (капли) либо для твердых веществ (парафина, битума и др.) пользуются методом уравнивания плотности, или методом взвешенной капли каплю или кусочек исследуемого нефтепродукта вводят в спирто-водный (р 1) или водно-соляный раствор слабой концентрации (р 1) и добавляют в сосуд воду или концентрированный раствор соли до тех пор, пока испытуемый нефтепродукт не будет взвешен внутри раствора. В этом случае плотность нефтепродукта равна плотности раствора, которую определяют ареометром. [c.37]


    НО увеличивается в результате введения в поливочный раствор солей, например [49] добавки Mg( 104)2 в раствор ацетата целлюлозы в ацетоне. Установлено, что основная роль добавляемых в поливочные растворы солей заключается в увеличении набухаемости мембраны и, следовательно, содержания в ней воды. Основную функцию при этом выполняют катионы, находящиеся в гидратной форме и стремящиеся соединиться со свободными гидроксильными группами в полимере [56]. Роль анионов вторична они могут уменьшить плотность зарядов катионов путем образования ионных пар в растворе. [c.68]

    В цилиндр или узкий стакан 1 с водой помещают тонкую, загнутую с одного конца стеклянную трубку 2 (рис. III. 12), наполненную исследуемым нефтепродуктом. Последний при помощи резиновой груши 3 выдавливают по каплям в жидкость, находящуюся в цилиндре 1, к которому от бюретки приливают при перемешивании необходимое количество спирта или крепкого раствора соли. Добавление производят до тех пор, пока капли продукта не окажутся в состоянии безразличного равновесия, т. е. пока плотность водного раствора не окажется равной плотности продукта. [c.56]

    Если экстрагируемое вещество хорошо растворяется в воде,, то применяют метод высаливания к раствору добавляют твердые соли (хлорид или сульфат натрия, сульфат аммония и др.). При этом меняется плотность раствора, уменьшается растворимость, что улучшает результаты экстракции. [c.49]

    Выполнение работы. 1. Выбор светофильтров. Для выбора оптимальных светофильтров снимают кривые светопоглощения растворов соли никеля и тиоцианатного комплекса железа. Для этого в мерную колбу вместимостью 100 мл помещают 20 мл стандартного раствора железоаммонийных квасцов и доводят водой до метки (раствор I). Аликвоту объемом 10 мл раствора I помещают в мерную колбу вместимостью 50 мл, подкисляют 5 мл НС1, добавляют 5 мл раствора тиоцианата калия (аммония) и доводят до метки водой. Приготовленный раствор фотометрируют при различных светофильтрах. Затем фотометрируют неразбавленный раствор соли никеля. Полученные данные наносят на график оптическая плотность - длина волны. На основании кривых светопоглощения выбирают два светофильтра, соответствующие максимальному поглощению каждого из компонентов -соли никеля (Х ) и тиоцианатного комплекса железа (Х2). [c.168]

    Построение градуировочного графика для никеля. Готовят 3-5 растворов соли никеля. Для этого в мерные колбы вместимостью 50 мл помещают разные объемы (от 5 до 10 мл) раствора соли никеля, доводят водой до метки и фотометрируют при длине волны X . Строят градуировочный фафик в координатах оптическая плотность - содержание никеля, мг/мл. [c.168]

    Построение градуировочного графика. В четыре-пять мерных колб вместимостью 50 мл приливают из бюретки по 10 мл раствора оксалата аммония, пипеткой добавляют различные (от 1 до 10 мл) объемы разбавленного стандартного раствора соли кальция (раствора II) и доводят содержимое колб до метки водой. (Растворы рекомендуется готовить с интервалом в 5 мин. Для повышения чувствительности определения можно добавить в каждую колбу 3-10 мл этилового спирта.) Растворы перемешивают, поочередно наливают в кювету оптического прибора (/ = 3 см при работе на фотоэлектроколориметре) и через 5 мин после приготовления измеряют оптическую плотность относительно воды при зеленом светофильтре. По полученным данным строят градуировочный график в координатах оптическая плотность - концентрация кальция, г/мл . [c.188]

    Раствор хлорида калия содержит 245,7 г соли на 1000 г воды. Плотность раствора 1,131 г/см . Вычислить моляльность, молярность, молярные доли воды и соли и концентрацию КС1 в растворе в массовых долях (%). [c.79]

    В свободном состоянии лантаноиды представляют собою типичные металлы, сходные с лантаном или с иттрием. В целом плотность простых веществ лантаноидов при переходе от Се к Ьи на протяжении периода закономерно увеличивается (от 6,7 до 9,85 г/см ) с увеличением массы атома. Однако плотность европия и иттербия существенно ниже плотности остальных элементов (см. два минимума верхней кривой на рис. 11.4). Это связано с тем, что атомы этих двух элементов имеют наполовину и полностью заселенные электронами 4/-подоболочки, обладающие повышенной устойчивостью. Поэтому 4/-электроны в образовании химической связи в простых веществах Ей и УЬ почти не участвуют. Нет у данных элементов и 5 -электронов. Поэтому химическая связь обусловлена, в основном, только ба-электронами и является менее прочной атомы дальше располагаются друг от друга, а плотность простого вещества становится меньше. Оксиды лантаноидов нерастворимы в воде, но легко присоединяют воду с образованием гидроксидов. Последние лишь незначительно растворяются в воде и имеют основной характер. Соли лантаноидов по своей растворимости подобны соответствующим солям лантана или иттрия. [c.501]

    В редуктор загружают расплавленный а-нитронафталин и горячую воду. Количество добавляемой воды зависит от концентрации дисульфида. При 90 °С начинают процесс восстановления, медленно добавляя раствор ЫагЗг ( 1,05 моль на 1 моль а-нитронафталина). Температуру в редукторе повышают до 103—104 °С (температура кипения реакционной массы). Испаряющаяся вода конденсируется в обратном холодильнике и стекает в редуктор. К концу восстановления температура реакционной массы повышается до 105—106 °С. Замедление реакции обнаруживают по отсутствию кипения. Тогда приостанавливают загрузку и подогревают редуктор паром. Во. время восстановления не допускают накапливания N3282 в реакционной массе во избежание образования большого количества побочных продуктов, получающихся в результате осернения и конденсации аминов. Особо тщательное наблюдение за процессом проводят в конце. По анализу пробы определяют остаток а-нитронафталина и загружают такое количество Na2Sj, чтобы его концентрация в растворе солеи была не более 25 г/л. По окончании реакции а-нафтиламин отделяют от раствора солей простым отстаиванием в воронках при 60—65 °С. При этой температуре плотность раствора солей равна 1300 кг/м , а плотность органического слоя 1100 кг/м . Отделившийся а-нафтиламин 2 раза промывают трех-четырехкратным количеством горячей воды. Каждый раз после промывки а-нафтиламин отстаивается от воды, причем в этом случае он переходит в нижний слой, затем его перегоняют под вакуумом. [c.118]


    Для определения железа в воде в мерных колбах вмб стимостыо 50 мл были приготовлены стандартный и испытуемый растворы. Для приготовления стаидартио1 о раствора взяли 8 мл раствора соли железа (111) (7Ve = = 0,010 0 мг/мл), а для испытуемого — 25 мл воды. После добавления соответствующих реактивов оптические плотности растворов определялись на фотоколориметре Z) T = 0,65, Dj = 0,62. Вычислить концентрацию железа в испытуемом растворе. [c.123]

    Определение железа. Содержание железа определяют фотометрическим методом, основанным на образовании в щелочной среде комплексных анионов трисульфосалицилата железа. Предварительно строят градуировочный график зависимости оптической плотности А от концентрации ионов Ре +. В мерные колбы вместимостью 50 мл вводят 0,10 0,15 0,20 0,25 и 0,30 мг ионов Ре + (отбирают соответственно 1,0 1,5 2,0 2,5 и 3,0 мл раствора соли железа, содержащего Ре + 0,1 мг/мл, в каждую колбу добавляют 5 мл 10%-ного раствора сульфосалициловой кислоты, 5 мл 10%-ного раствора аммиака, разбавляют до метки дистиллированной водой и тщательно перемешивают. Измеряют оптическую плотность растворов на фотоэлектроколориметре с синим светофильтром (Я = 400 нм) в кюветах с толщиной слоя / = 30 мм, используя дистиллированную воду в качестве раствора сравнения. Строят график зависимости Л=/(сре + (в мг). [c.232]

    Пример. Для раствора, содержащего 4,96 г-мол Na l и 0,92 г-мол Na2SO4 на 1000 г воды, определить концентрацию составных его частей в грамм-эквивалентах соли на 1 л раствора и в нормальных делениях. Плотность раствора 1,245 г см . [c.17]

    Капролактам (лактам е-аминокапроновой кислоты, 2-оксо-гексаметиленимин) представляет бесцветное кристаллическое вещество с температурой плавления 68,8°С, темпе-/КН ратурой кипения 262,5°С и плотностью 1,02 т/м (при 70°С). Хорошо растворим в воде (525 г в 100 г воды), бензоле, ацетоне, этаноле, диэтиловым эфире, плохо растворим в алифатических углеводородах. Растворяется в разбавленной серной кислоте, гидролизуясь до е-аминокапроновой кислоты. Гигроскопичен. При нагревании с концентрированными минеральными кислотами капролактам образует соли. В присутствии каталитических количеств воды, спиртов, аминов и органических кислот при нагревании полимеризуется с образованием полиамида. [c.343]

    Для Приготовления стандартных растворов в мерные колбы вместимостью 100 мл вносят 1, 2, 3, 4 и 5 мл основного стандартного раствора соли железа, увеличивая содержание железа в каждом стандартном растворе на 0,06 мг, добавляют по 10 мл раствора сульфосалициловой кислоты, по 10 мл раствора аммиака, доводят дистиллированной водой до метки и перемешивают. Оптическую плотность приготовленных стандартных растворов измеряют при 416 нм (фиолетовый или синий светофильтр) относительно раствора холостой пробы. По полученным данным строят линейный градуировочный график и рассчитывают его параметры. [c.220]

    Отработанные воды производства нитроакриловой кислоты содержат до 740 мг/л u(N0a)2- До какого значения можно повысить в стоках содержание u(NOa)j очисткой отводимых вод обратным осмосом через ацетилцеллюлозиые мембраны, если процесс вести при 20 °С и рабочем давлении в 9,8 МПа, учитывая, что значение последнего в 3—4 раза превышает осмотическое давление концентрата. Какую часть сточных вод можно будет после этого вернуть в производство Степень электролитической диссоциации соли принять равной 0,65, Плотность раствора считать неизменной и равной 1000 кг/м  [c.175]

    Выполнение работы. 1. Анализ исследуемого раствора. Предварительна рассчитанную аликвоту кислого раствора, содержащую 1-50 мкг молибдена, помещают в делительную воронку, добавляют 2 мл НС1 (конц.), 1 мл раствора соли Мора, 3 мл раствора тиоцианата калия и 3 мл раствора хлорида олова(П). Разбавляют водой примерно до 25 мл и пипеткой приливают 10 мл изоамилового спирта. Встряхивают воронку в течение 1 мин, сливакэт слой органического растворителя в сухую кювету фотоэлектроколориметра (/ = 1 см) и через 10 мин измеряют оптическую плотность окрашенного в красный цвет раствора при 470-490 нм. Если величина оптической плотности находится за пределами значений 0,1-0,8, повторяют измерение с другой аликвотой исследуемого раствора. [c.164]

    Приборы и реактивы. Прибор для получения сероводорода. Стакан. Тигель № 1. Фарфоровая чашечка (с1 = 3.— 4 см). Железная полоска. Цинк (гранулированный порошок). Натрий. Церий или мишметалл. Диоксид марганца. Мод кристаллический. Магний лента. Пероксид бария. Сульфат натрня. Сульфит натрия. Нитрит калия. Сульфид железа. Нитрат меди Си(Ы0з)2-ЗН20, Висмутат натрня. Дихромат аммоиия. Пероксодисульфат калия или аммония. Спирт этиловый. Растворы сероводородная вода хлорная вода бромная вода йодная вода крахмала фенолфталеина щавелевой кислоты (0,5 н,) серной кислоты (2 и. 4 и, плотность 1,84 г/см ) хлороводородной кислоты (2 н. плотность 1,19 г/см ) азотной кислоты (0,2 н. 2 н.) уксусной кислоты (2 и.) гидроксида натрня или калия (2 и.) аммиака (2 н. 25%) сульфата марганца (0,5 и.) сульфата меди (0,5 н,) сульфита натрня (0,5 н,) хлорида олова (11) (0,5 и,) дихромата калия (0,5 н.) перманганата калия (0,5 н,) нитрата ртути (II) (0,5 н,) нитрата серебра (0,1 н.) формальдегида (10%-ный) пероксида водорода (3%-ный) иодида калия (0,5 н.) сульфата цинка (0,5 и.) хлорида железа (111) (0,5 и.) гексацнано-феррата (III) калия (0,5 н.) соли ттана (IV) (0,5 и.) сульфида натрия нли аммония (0,5 и,) гидроксида натрия (2 н,). [c.94]

    Приборы и реактивы. Прибор для получения хлороводорода (рис. 40). Стеклянные палочки. Сетка асбе-стнрованная. Кристаллизатор или чашка фарфоровая. Стакан химический (вместимостью 100 мл). Электрическая плитка. Диоксид марганца. Хлорид натрия. Бромид натрия. Иодид калия. Дихромат калия. Соль Мора. Перхлорат калия. Перманганат калия. Хлорат калия. Магний (порошок). А люминий (порошок). Цинк (порошок). Индикаторы лакмусовая бумажка, лакмус синий. Органический растворитель. Растворы хлорной воды бромной воды йодной воды сероводородной воды хлорида натрия (0,5 и.) бромида натрия (0,5 н.) иодида калия (0,1 н.) нитрата серебра (0,1 н.) хлорида хлората калия (насыщенный) перхлорат калия (0,5 и.) дихромата калия (0,5 н.) перманганата калия (0,5 н.) тиосульфата натрия (0,5 н,) едкого натра (2 н.) хлороводородной кислоты (плотность 1,19 г/см ) серной кислоты (плотность 1,84 г/см 70%-ной) фосфорной кислоты (концент-рироввиная). [c.132]

    Приборы и реактивы. Штатив с кольцом. Сетка асбестированная. Фарфоровый тигель. Фарфоровый треугольник. Пинцет. Пипетка для растворов. Лучина. Фильтровальная бумага. Марганец твердый нли порошок. Палочки стеклянные. Едкий натр. Нитрат калия (или натрия). Перманганат калия. Сульфит натрия. Соль Мора. Висмутат натрия. Диоксид марганца. Диоксид свинца. Пероксодисульфат гммония. Лакмусовая бумажка (синяя). Спирт этиловый. Растворы бромной воды, хлорной воды, едкого натра (2 н.), хлороводородной кислоты (2 н., плотность 1,19 г/см ), серной кислоты (2 н., плотность 1,84 г/см ), азотной кислоты (2 н.), уксусной кислоты (2 н.), сульфата марганца (0,5 н.), хромата калия (0,5 и.), карбоната аммония (0,5 н.), сульфида аммония (0,5 н.), иодида калия (0,1 п.), перманганата калия (0,5 н.), пероксида водорода (10%-иый), нитрата серебра (0,1 н.), перрената аммония (насыщенный), хлорида калия (0,5 н.). [c.221]

    Выполнение работы. В стакан на 400 мл налить 200 мл дистиллированной воды и добавить небольшими порциями кристаллический сульфат натрия N32504- ЮНаО (или безводную соль N32804) лри комнатной температуре, непрерывно перемешивая раствор стеклянной палочкой. Когда получите насыщенный раствор (соль перестанет растворяться и начнет накапливаться на дне стакана), прекратить перемешивание и дать раствору отстояться в течение нескольких секунд. Слить часть отстоявшегося раствора в цилиндр и измерить ареометром его плотность, а термометром температуру. Результаты измерений записать в журнал. [c.273]

    Для малых количеств нефтепродукта (капли) либо для определения плотности твердых тел (парафина, битума и др.) пользуются методом уравнения плотности, или методом взвешенной капли каплю или кусочек исследуемого нефтепродукта (фиг. 8) вводят в спиртоводный (е < 1) или водносоляной раствор слабой концентрации д > 1). Добавляя в сосуд воды или концентрированного раствора соли, заставляют испытуемый нефтепродукт занять средневзвешенное состояние. В этом случае плотность нефтепродукта равна плотности раствора в сосуде. [c.47]

    Калибровочный график. Для построения калибровочного графика в пять мерных колб емкостью 50 мл вводят от 10 до 50 мкг скандия с интервалом 10 мкг в виде раствора его соли с содержанием 5с 10 мкг мл, 5 мл буферного раствора с pH 5 5 мл 0,05%-ного раствора ксиленолового оранжевого и разбавляют водой до метки. В этих же условиях готовят раствор сравнения, содержапдий все компоненты в указанных количествах и ие содержащий скандия. Через 20 мин измеряют оптическую плотность растворов на фотоэлектроколориметре относительно раствора сравнения и по полученным данным строят калибровочный графнк. [c.373]


Смотреть страницы где упоминается термин Плотность растворов солей в воде: [c.764]    [c.46]    [c.52]    [c.146]    [c.330]    [c.18]    [c.185]    [c.119]    [c.48]    [c.346]    [c.61]    [c.40]    [c.174]    [c.271]    [c.312]    [c.324]   
Смотреть главы в:

Краткий справочник физико-химических величин Издание 8 -> Плотность растворов солей в воде

Краткий справочник физико-химических величин Изд.8 -> Плотность растворов солей в воде




ПОИСК





Смотрите так же термины и статьи:

Плотность воды, адсорбированной на солях в пленках раствора III, фиг

Плотность растворов в воде

Плотность растворов некоторых солей и фосфорной кислоты в воде

Раствор солей

Растворы в воде



© 2024 chem21.info Реклама на сайте