Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Градиенты структурные

    Таким образом, структура и свойства граничных слоев жидкостей, находящихся в сфере действия поверхностных сил твердой фазы, значительно изменяются. При этом изменение как структуры, так и свойств граничных слоев происходит по их толщине, т. е. в пределах граничных слоев наблюдается градиент структурной упорядоченности и физико-химических свойств жидкости. [c.201]


    Большинство существующих промышленных процессов в химической и нефтехимической промышленности (реакторные процессы, массообменные и теплообменные процессы, процессы смешения газо-жидкостных и сыпучих сред и т. д.) — это процессы с низкими (малыми) параметрами (давлениями, скоростями, температурами, напряжениями, деформациями). В силу специфики целей и задач химической технологии здесь на передний план выступают процессы химической или физико-химической переработки массы. Поэтому при структурном упрощении обобщенных описаний, как правило, пренебрегают в первую очередь динамическими соотношениями (характеризующими силовое взаимодействие фаз и отдельных составляющих внутри фаз) или учитывают их косвенно при установлении полей скоростей фаз, концентрируя основное внимание на уравнениях баланса массы и тепловой энергии. Кроме того, в самих уравнениях баланса массы и энергии, наряду с чисто гидромеханическими эффектами (градиентами скоростей, эффектами сжимаемости, диффузии и т. п.), первостепенную роль играют [c.13]

    Объектом глубокого изучения в целом ряде исследований явился катализатор Pt/ . Так, была изучена [60, 61] связь между структурными особенностями платинированных углей, содержащих разное количество металла, распределением в них платины и их активностью в реакциях гидрирования бензола и дегидрирования циклогексана. Оказалось, что при размере зерен угля 4— 10 мм происходит падение концентрации Pt от поверхности в глубь зерна при этом градиент концентрации металла по глубине зерна уменьшается с уменьшением концентрации Pt в исходном растворе. Кроме того, авто- [c.198]

    В связанном слое жидкости, образующемся на поверхности и внутри пор мембраны, погруженной в раствор, по толщине этого слоя имеется градиент структурной упорядоченности и концентрации компонентов раствора. Градиент концентрации определяется правилом уравнивания П. А. Ребиндера [221]. Важным следствием этого правила является возможность создания условий для проявления поверхностной активности, а следовательно, преимущественной сорбции какого-либо определенного компонента раствора. Правило Ребиндера нашло теоретическое развитие в работах [222, 224], в которых показано, что переход от состава поверхностного — связанного слоя к составу раствора в объеме происходит постепенно. Профиль изменения концентрации компонентов в связанном слое схематично можно представить так, как это показано на рис. IV-33,a, б [181, 231]. Вследствие изменения свойств жидкости в связанном слое происходит изменение текучести жидкости по толщине (рис. IV-33, в). [c.217]


    В связанном слое жидкости, образующемся на поверхности и внутри пор мембраны, погруженной в раствор, по толщине этого слоя имеется градиент структурной упорядоченности и концентрации компонентов раствора. Градиент концентрации определяе-юя правилом Ребиндера [2]. Правило Ребиндера нашло теоретическое развитие в [11], где показано, что переход от состава поверхностного (связанного) слоя к составу раствора в объеме происходит постепенно. [c.387]

    Установлено [195], что вблизи гидрофильных поверхностей в воде на расстоянии нескольких мономолекулярных слоев наблюдается аномалия диэлектрических свойств. Например, значительное понижение диэлектрической проницаемости у воды (при толщине граничного слоя 0,07 мкм) до 4,5 единиц свидетельствует о снижении подвижности молекул воды. Это приводит к снижению растворяющей способности связанной воды. Изменение как структуры, так и свойств граничных слоев происходит по их толщине, т. е. в пределах граничных слоев наблюдается градиент структурной упорядоченности и физико-хи- [c.112]

    В связанном слое жидкости, образующемся на поверхности и внутри пор мембраны, погруженной в раствор, по толщине этого слоя имеется градиент структурной упорядоченности и концентрации компонентов раствора. Градиент концентрации определяется правилом уравнения Ребиндера [117]. Важное [c.132]

    А. Прямолинейно-параллельная фильтрация упругой ВПЖ, обладающей предельным градиентом, в однородном полубесконечном пласте. В начальный момент времени 2 = О на границе пласта х = о начинает работать добывающая галерея, на которой поддерживается постоянное давление р . При этом в пласте образуются две зоны зона фильтрации и зона, где течение отсутствует, граница раздела между которыми перемещается со временем по закону / = / (/), причем I (0) = 0. Считается, что жидкость, перемещаясь, приобретает те структурно-ме-ханические свойства, которые характерны для данной точки пласта. Предполагается, что зона отсутствия фильтрации представляет собой невозмущенную область, в которой давление остается первоначальным пластовым, а предельный градиент постоянен. [c.345]

    Спектроскопия ядерного квадрупольного резонанса (ЯКР), относящаяся к радиоспектроскопическим методам, и метод мессбауэровской спектроскопии, называемый также методом ядерного гамма-резонанса (ЯГР), используются в структурных исследованиях и позволяют получать уникальную информацию о распределении электронной плотности и характере химических связей по сдвигам резонансных сигналов ядер и параметров градиента неоднородного электрического поля на ядрах, создаваемого электронным окружением. Эти данные важны как опорные для теоретической и квантовой химии. Оба метода применимы для исследования только твердых образцов. Исключительно высокая чувствительность обоих методов к малейшим изменениям электрических полей открывает возможность исследования широкого круга проблем, связанных с внутри- и межмолекулярными взаимодействиями. [c.87]

    Структурное растрескивание неизбежно связано с температурным градиентом, существующим в большинстве случаев в огнеупоре. Расплавы, содержащиеся в огнеупорах, перемещаются вследствие разности температур. Таким способом большое количество жидкости, возникающее в рабочем слое футеровки, движется по капиллярным каналам изделий. Жидкая фаза, включающая компоненты, поступившие из расплавленного металла и шлака, проникает по порам изделия и арматурного слоя, оплавляют изделия и насыщают их. Сквозь рабочий слой проникают все новые порции расплава, вступающие в реакцию с изделиями, и насыщают их. Необходимо обращать внимание на скорость перемещения ионов, зависящую от их вида. Можно считать, что оксиды А1, Т1, Са, Ре проникают независимо. [c.108]

    Напротив, оценки по градиенту температур и по градиенту давлений совпадают в предположении структурного режима движения нефти по подводному участку коллектора 0 /Ве с [0,39... 0,66]. [c.165]

    Механические свойства консистентных смазок, поскольку они являются коллоидными системами, не могут быть определены однозначно какой-либо одной величиной даже нри заданных температуре и давлении. Для всех коллоидных систем типична так называемая структурная вязкость (внутреннее трение), изменяющаяся с изменением градиента скорости. Для пластич- [c.698]

    Исследуя зависимость вязкости от давления, под которым происходит движение масла в капилляре, П. И. Санин с сотрудниками [45] нашли, что первые признаки структурной вязкости у машинных, автомобильных и авиационных масел появляются при температуре от —10° до 0. При этих температурах в маслах впервые обнаруживается свойственная структурной вязкости зависимость от градиента скорости или характеризующего его в данном случае давления. С понижением температуры аномальные свойства усиливаются. [c.104]

    Градиент -Рс/ с линейного участка кривой неньютоновского течения часто рассматривают как кажущуюся вязкость . Если слабое сдвиговое усилие стационарно прикладывают к концентрированным эмульсиям, часто оказывается, что равновесное напряжение не устанавливается мгновенно. Вместо этого Р понижается в течение периода времени, обусловленного структурными изменениями, до тех пор, пока не будет достигнуто равновесное значение. Необходимый интервал времени уменьшается, если скорость сдвига увеличивается. Когда сдвиговое усилие устраняют, структура вновь [c.199]


    Наибольшее практическое значение имеют структурно-механические, или реологические, свойства буровых жидкостей. Специфика коллоидно-дисперсных и микрогетерогенных систем предопределяет их промежуточное положение между истинно твердыми и истинно жидкими телами. Они обладают вязкостью, пластичностью, упругостью и прочностью. Важнейшей особенностью коллоидных систем является аномалия вязкости. Их вязкость не является постоянной величиной, а зависит от градиента скорости. Для многих коллоидных систем, образующих пространственные структуры, характерно наличие предела текучести, т. е. напряжения сдвига, ниже которого движение не происходит. Аномалия обусловлена наличием в коллоидных системах структурных сеток, образуемых дисперсной фазой. [c.5]

    Консистентные смазки благодаря коллоидным особенностям своей структуры, наоборот, характеризуются так называемой структурной или аномальной вязкостью. Их вязкость при постоянной температуре сильно зависит от градиента скорости сдвига. Чем он больше, тем вязкость смазки меньше. В практике применения консистентных смазок это имеет положительное значение, так как увеличение скорости движения труш ихся частей в механизмах сопровождается уменьшением вязкости смазки, что относительно снижает обш ее сопротивление системы движению. Обш ее течение слоев, как в масле, в смазке не имеет места. Течение, или неупругая деформация смазки состоит из суммы деформаций ее отдельных структурных элементов, зависяш их от скорости сдвига. Следовательно, понятие о вязкости смазок весьма условно и постоянного показателя вязкости они не имеют. Следует отметить, что вязкость смазок с изменением температуры изменяется во много раз меньше, чем у нефтяных масел. Это, конечно, является также положительной характеристикой консистентных смазок. [c.250]

    Поскольку полистирол и полибутадиен относятся к категории термодинамически несовместимых, полимеров, термодинамическая поправка связана здесь с сегрегационным параметром хав (А и В обозначают блоки, которые в свободном состоянии разделились бы на макрофазы), величина которого столь высока, что можно принять эффективную энергию излома бесконечной, т. е. считать для полистирольных блоков /" = 0. Это приводит к полному их распрямлению вот здесь-то обходным путем удается реализовать структуру, которая возникла бы при низкотемпературном переходе второго рода, если бы его осуществлению не мешало структурное стеклование иными словами, этот переход действительно реализуется в результате сегрегации (количественно характеризуемой параметром хав) и воздействия относительно малого продольного градиента скорости у входа в канал экструдера. Впрочем, можно показать, что тот же эффект в других условиях достигается за счет одной лишь сегрегации (28]. [c.223]

    При измерении реологических параметров с помощью соосных цилиндров измерение и исчисление реологических параметров производится следующим образом. Наполняют мерные бачки исследуемой жидкостью, термостатируют ее и начинают измерение. Для ньютоновских жидкостей достаточно одноточечное измерение, чтобы определить динамическую вязкость. У веществ, отличающихся структурной вязкостью, как правило, всегда записывают кривую текучести и определяют зависимость касательного напряжения от градиента напряжения на срез, чтобы охарактеризовать реологические свойства исследуемого вещества. С этой целью необходимо начинать с измерения при низких значениях градиента напряжения на срез. Повышение градиента на срез осуществляется увеличением шага оборотов измерительного цилиндра. Если необходимо снять кривую гистерезиса, опыты повторяют в обратном порядке, т.е. постепенно уменьшают число оборотов и тем самым уменьшают градиент на срез. [c.58]

    Именно поэтому в описанном метоле минимизации структурного функционала приходится идти на ощупь, анализируя направления градиента при каждом шаге движения к минимуму. [c.114]

    Коэффициент полноты извлечения может зависеть от целого ряда характеристик скорости вытеснения, поверхностного натяжения на границах фаз, разности их плотностей, структуры порового пространства, угла смачивания твердой фазы, содержания и свойств связанной воды, а также химического состава нефти и вытесняющих ее жидкостей или газа. Исследованиями последних лет установлено, что на полноту извлечения запасов нефти оказывают существенное влияние структурно-механические свойства аномальных нефтей [25, 27 и др.], проявляющиеся при малых градиентах пластового давления. [c.145]

    Величина сопротивлений, определяемых двумя последними факторами при постоянной теш1ературе, зависит от градиента скорости сдвига. При малых скоростях сдвига в области, близкой к переходу через предел прочности, интенсивно разрушаются обломки структурного каркаса. При увеличении скорости деформацрш дальнейшее разрушение структурных элементов и, следовательно, энергетические затраты на такое разрушение уменьшаются. В результате разрушения обломков структурного каркаса и ориентации структурных элементов при увеличении скорости деформации снижаются также сопротивления, обусловливаемые стеснением потока. [c.273]

    В следующей главе, посвященной мёссбауэровской спектроскопии, рассмотрена модель парциального градиента поля (ПГЦ) для корреляции градиентов поля на центральном атоме. Она оказывается полезной для установления молекулярных структур на основании данных мёссбауэровской спектроскопии. Эту модель можно также использовать для структурного анализа в случае ЯКР. Поскольку большинство данных, по которым была построена и проверена модель ПГЦ, получено с помощью мёссбауэровской спектроскопии, этот вопрос обсуждается в следующем разделе. [c.279]

    Оказалось, что все жидкости обладают модулем сдвиговой упругости и модуль сдвига таких полярных жидкостей, как вода и спирты, при приближении к поверхности пьезо-кварца на расстояние, меньшее 0,1 мкм, повышается во много раз. По мнению авторов, это также является следствием структурных изменений в пристенных слоях полярных жидкостей. Повышение значения сдвиговой прочности граничных слоев обнаружено также при исследовании электроосмоса в капиллярах при высоких градиентах потенциала [228]. Установлено, что вблизи гидрофильных поверхностей в воде на расстоянии нескольких мономолеку-лярных слоев имеется атюмалия диэлектрических свойств. Например, значительное понижение диэлектрической проницаемости у воды (прн толщине слоя 0,07 мкм — до 4,5), что свидетельствует о снижении свободы вращения молекул воды в тонких прослойках. Теплопроводность жидкости с уменьшением толщины граничной пленки при этом резко возрастает, в то время как ее электрическая проводимость снижается. [c.201]

    В работе проведены исследования структурно-механотеских свойств составленных смесей на ротационном вискозиметре КНЕОТЕ8Т-2 с системой двух соосных коаксиальных цилиндров (8/81). Измерения проводились в диапазоне градиентов скорости сдвига от 1,5 до 1312 с и в интервале температур от минус 20°С до плюс 20 С. [c.274]

    Физически это можно объяснить различием интенсивности радиального тепло- и массопереноса в зависимости от расположения структурной неоднородности. Чем больше радиальный градиент тедшератур, тем интенсивней радиальный тенлонеренос. В свою очередь, чем большая стенень превращения достигается в нятне , тем интенсивней происходит подсос в него ненрореа-гировавшего вещества, что приводит к повышению температуры. В случае образования в слое локального разрыхления на выходе наблюдается холодное пятно и небольшое повышение температуры в области, прилегающей к пятну , которое объясняется диффузией непрореагировавшего вещества в более горячую зону. Отметим, что на выходе пз второго слоя при в = 0,3 температура в горячем пятне на 50°С превышает среднюю но радиусу, что согласуется с экспериментом. На рпс. 5 приведены профили скорости фильтрации на выходе нз пятна с проницаемостью бв = = 0,3 и из слоя. Профиль скорости фильтрации выравнивается на расстоянии 18Йз, а на выходе из слоя определяющее влияние на профиль скорости оказывает температурная неоднородность и наблюдается некоторое повышение скорости в области горячего пятна . Характеристики температурных неоднородностей на выходе из слоев приведены в табл. 2. Наличие горячих и холодных пятен обусловливает соответственно положительные и отрицательные значения коэффициентов асимметрии. При степенях превращения, близких к единице (4-й слой), структурные неоднородности оказывают слабое влияние на процесс, хотя реализующаяся при этом аэродинамическая неоднородность весьма значительна. Структурные неоднородности кроме всего прочего ухудшают стабильность процесса. Как показали расчеты, параметрическая чувствительность в области с пониженной проницаемостью (бн = 0,3) в 2 раза больше, чем в остальной части слоя, что накладывает жесткие ограничения на флуктуации входных параметров, т. е. ухудшает возможность эффективного контроля и управления режимом в слое. [c.65]

    На примере исследования деформационно-прочностных свойств мангышлакской нефти было показано, что в зависимости от градиента скорости нефть ведет себя как псевдопластичное, идеаль-но-пластичное тело или как тело Шведова — Бингама [66]. Эффективная вязкость парафиннстых нефтей складывается из структурной вязкости, зависящей от наличия в системе надмолекулярных структур, температуры, градиента скорости сдвига и вязкости ньютоновской" жидкости, в которую переходит неньютоновская жидкость после разрушения структурированной системы [67]. Термообработка, введение специальных добавок оказывают большое влияние на реологические свойства парафиннстых нефтей [68—70]. [c.21]

    Объбмно-механические свойства смазок описываются несколькими способами, в том числе реологической кривой зависимости скорости (точнее, градиента скорости) деформации от напряжения сдвига т (рис. 97). При нг1пряжениях сдвига выше предела упругости структурного каркаса смазки испытывают очень медленно протекающие необратимые деформации течения (ползучесть). Однако поскольку деформации происходят в самом каркасе, то смазка сохраняет целостность. Поскольку на участке кривой Т1— Т2 все разрушенные связи практически мгновенно восстанавливаются, то скорость течения смазок пропорциональна напряжению сдвига. [c.358]

    Структурообразование в дисперсных системах в условиях ие-црерывиого разрушения структуры изучается с помощью специальных вискозиметров, позволяющих измерять вязкость при различных скоростях потока жидкости или наблюдать изменение вязкости во временн прн фиксированной скорости потока (при фиксированном градиенте скорости сдвига). Приборы, основанные на первом принципе, используют для получения реологических констант тамгюиажпых растворов, которые необходимы при гидравлических расчетах. Подобные измерения можно производить только во время стадии И, когда структурно-механические свойства портландцементной суспензии меньше изменяются во времени. Для изучения кинетики структурообразования тампонажных растворов в условиях непрерывного разрушения структуры применяются приборы, называемые консистометрами. Они фиксируют сопротивление, оказываемое суспензией перемешиванию при постоянной частоте вращения мешалки. Измеряемая величина, называемая консистенцией, характеризует эффективную вязкость суспензии прл интенсивности перемешивания, примерно соответствующую реальным условиям цементирования глубоких скважин. [c.110]

    Приведенные выше р< о.логические пара.метры использ чот д.щ[ характеристики структурно-механических свойств нефти. Дтя описания особенностей течения структурированной нефти через пористую среду пользуются специальными фильфадионными характеристиками (парамегфами), определяемыми с помощью графика зависимости скорости фильтрации от градиента давления (рис.3.3). [c.35]

    Результаты исследований показывают, что при пластовой температуре структурно-механические свойства девонской нефтн проявляются слабо. Они усиливаются с понижением температуры нефти. Это является причиной интенсивного роста вязкости и снижения подвижности нефти. При температуре 25° С подвижность нефти оказывается особенно низкой. Здесь также отмечается гистерезис подвижности даже при градиентах давления выше 0,1 кгс/см 2, м. Это обусловлено влиянием парафинов на фильтрацию нефти. [c.10]

    Некоторые поверхностно-активные вещества способны ослаблять структурно-механические свойства аномально-вязких нефтей, проявляхь щиеся при малых градиентах пластового давления. [c.105]

    Представляет интерес на базе проведенного анализа количественное сравнение размеров структурных образований. В качестве эталона можно принять сажу. Средние размеры агрегатов частиц сажи ПМ-100 изменяются в пределах 0,2-0,3 мкм. Можно считать, что примерно такие размеры имеют гидродинамические частицы в суспензии сажи с полностью разрушенной структурой, что достигается при градиенте скорости сдвига 1312с. При этом величина А для агрегатов сажевых частиц равна 134 мкПа с. Размеры структур, образованных из ВМС нефти, уже при концентрации [c.262]

    Поскольку в настоящее время имеется ряд хороших монографий, посвященных проблемам реологии и, в частности, вязкости полимеров (см., например, [38, 49]), мы ограничимся лишь кругом вопросов, касающихся механизма вязкого течения в связи со структурными и релаксационными принципами, изложенными выше. В частности, уравнение (V. 2) уже дает определенную почву для раздумий на что конкретно расходуется механическая энергия Из вполне очевидного ответа — на разрушение структуры системы — следует немедленно второй вопрос о влиянии скорости воздействия (мерой которой служит градиент у, имеющий размерность обратную времени) на это разрушение и, соответственно, на диссипацию энергии и величину вязкости. При этом выясняется, что всем полимерным системам в вязкотекучем состоянии присуща так называемая аномалия вязкости [термин неудачный, ибо отклонение от формулы (V. 1), вызванное естественными и физически легко интерпретируемыми причинами, вряд ли следует считать аномалией], проявляющаяся в зависимости эффективной (т. е. измеряемой в стандартных условиях, при фиксированных Я и -у) вязкости от Р или от у. Эта аномалия связана как с разрушением структуры системы, так и с накоплением высокоэластических деформаций в дополнение к пластическим (необратимым). Эти деформации и разрушение претерпевает суперсетка, узлы которой образованы микроблоками или, в меньшей мере, перехлестами единичных цепей. При переходе от расплава к разбавленному раствору относительный вклад последних в структуру сетки возрастает, точнее, выравниваются времена их жизни и времена жизни флуктуационных микроблоков. [c.163]

    Значения квадрупольных моментов ядер обычно известны, и экспериментальные исследования спектров ЯКР проводятся для получения частот переходов, констант квадрупольного взаимодействия, а значит, е ипараметров асимметрии градиента электрического поля Т1 (см. ниже), т. е. структурных данных, информации о распределении зарядов и характере химических связей. Например, чем больше ионный характер связи с данным атомом, тем меньше величина градиента поля и e qQ. Обратно, чем более ковалентной является химическая связь, тем выше соответствующая константа квадрупольного взаимодействия. Данные ЯКР предоставляют возможность экспериментальной проверки результатов квантово-механических расчетов и приближенного рассмотрения ряда проблем, связанных с внутри- и межмолекулярными взаимодействиями. Метод спектроскопии ЯКР важен как аналитический при работе с твердыми веществами, для которых не представляет трудности выращивание больших монокристаллов. [c.91]

    В случае же расчета объема перенесенной жидкости на 1 в сек по формуле (2), т. е. = = onst, необходимо учесть структурные характеристики I и Л, так как они определяют градиент потенциала на диафрагме Н=- и пропорциональную ему величину линейной скорости жидкости w = . [c.182]

    Электрохимическая коррозия заключается в переходе в элекгролиг ионов метал1Е1 под действием разности потенциалов, обусловленной химической и структурной неоднородностью отдельных участков поверхности металла и градиента температуры. К частным ее случаям относятся некоторые виды влажной атмосферной и почвенной коррозии, протекающей под действием блуждаюпщх токов, а также контактная ко фо- [c.4]

    Реологические и структурно-механические свойства нефтей опре.адляются обшим содержанием асфальто-смолистых веществ и парафина, а также их соотношением. При малых значениях градиента скорости реологические зависимости некоторых нефтей нелинейны, кривые проходят через начало координат и вогнуты по направлению к оси градиента скорости [36, 65, 70]. [c.35]

    Соотношение эквивалентности определяется следующим образом говорят, что два векторных поля V, и над Я эквивалентны, если и только если существует гомеоморфизм, т. е. биективное и непрерывное отображение в Я , которое отображает траектории и в траектории и. Применяя это определение к векторным полям градиента Vp(r, X), X Я , получаем соотношение эквивалентности, действующее в ядерном конфигурационном пространстве Я , согласно которому две ядерные конфигурации X, X е Я эквивалентны, если и только если их соответствующие векторные поля градиента Ур(г, X), Ур г, X ) эквивалентны. Далее, мы говорим, что ядерная конфигурация X е Я структурно-устойчива, если X является внутренней точкой ее класса эквивалентности. Другими словами, всегда можно найти окрестность V структурноустойчивой конфигурации X, такую, что V полностью содержится в классе эквивалентности X. Все конфигурации в V имеют тот же самый молекулярный граф, что и устойчивая конфигурация X. Эти молекулярные графы представляют одну-единственную структуру, и максимальная окрестность, которая содержится в классе эквивалентности X, называется структурной областью, соответствующей X. [c.58]


Смотреть страницы где упоминается термин Градиенты структурные: [c.194]    [c.122]    [c.38]    [c.137]    [c.63]    [c.169]    [c.240]    [c.243]    [c.85]    [c.72]    [c.424]    [c.148]   
Эволюция без отбора Автоэволюция формы и функции (1981) -- [ c.73 ]

Эволюция без отбора (1981) -- [ c.73 ]




ПОИСК







© 2025 chem21.info Реклама на сайте