Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Практика гравиметрического анализа

    Разделение. Метод разделения выбирают в зависимости от свойств определяемого соединения и мешающих элементов, а также от того, какой метод анализа предполагается использовать гравиметрический, титриметрический или какой-либо другой. В практике используют химические, физические и физикохимические способы разделения. К химическим относятся главным образом методы осаждения, основанные на различной растворимости веществ, к физическим — отгонка, сублимация, плавление и т. д., к физико-химическим — экстракция, ионный обмен, хроматография и некоторые другие. Более подробно методы разделения будут рассмотрены в дальнейшем. [c.20]


    Наиболее часто при оценке гумусного состояния почвы определяют общее содержание в почве веществ гумусовой природы. Прямое гравиметрическое определение органических веществ почвы не применяется из-за множества возникающих при этом затруднений сложности выделения органических веществ, прочно связанных с минеральной частью почвы, возможного изменения их состава в процессе экстракции, а также из-за трудоемкости анализа, что немаловажно для такого широко используемого определения. Поэтому для оценки содержания гумуса в почве прибегают к косвенным методам, основанным на разложении гумуса почвы до углекислого газа и воды. В ходе анализа определяют количество углерода, содержавшегося в органическом веществе, подвергшемся разложению. Таким образом, эти методы основаны на предположении о том, что состав органических веществ в почве относительно постоянен и по количеству углерода, входящего в состав гумуса, можно судить о содержании последнего. Несмотря на такое, казалось бы, смелое допущение, этот подход является единственным принятым в аналитической практике для определения содержания гумуса в почвах и, как правило, в применении к большинству используемых в сельском хозяйстве почв дает достаточно корректные оценки этого показателя. [c.211]

    Аминокислотный состав и последовательность аминокислот выяснены для многих тысяч белков. В связи с этим стало возможным вычисление их молекулярной массы химическим путем с высокой точностью. Однако для огромного количества встречающихся в природе белков химическое строение не выяснено, поэтому основными методами определения молекулярной массы все еще остаются физико-химические методы (гравиметрические, осмометрические, вискозиметрические, электрофоретические, оптические и др.). На практике наиболее часто используются методы седиментационного анализа, гель-хроматография и гель-электрофорез. Определение молекулярной массы белков методами седиментационного анализа проводят в ультрацентрифугах , в которых удается создать центробежные ускорения [c.44]

    Гравиметрическим методом был установлен химический состав большого числа веществ. Он являлся основным методом определения атомных масс. Его используют для определения гигроскопической влаги у широкого круга веществ, кристаллизационной воды, сульфат-иона, диоксида кремния, щелочных, щелочно-земельных и многих других металлов. Метод этот хорошо изучен, но в практике современного анализа применяется сравнительно редко. Его основной недостаток — длительность его проведения. Гравиметрические определения требуют больших затрат времени, хотя он и обеспечивает высокую точность, надежность, не требует сложной аппаратуры и доступен для любой химической лаборатории. [c.230]


    Преимущества электрогравиметрического метода анализа. Электрогравиметрический метод анализа широко применяется в аналитической практике, особенно при исследовании цветных металлов и их сплавов. Он весьма прост, удобен и достаточно точен. Электро-весовые определения выполняются сравнительно быстро. Особым их преимуществом является то, что они не требуют введения в анализируемый раствор посторонних веществ, как это делается в обычном гравиметрическом анализе. " [c.250]

    ПРАКТИКА ГРАВИМЕТРИЧЕСКОГО АНАЛИЗА [c.106]

    В практике химических лабораторий обычно пользуются методиками, в которых приведены готовые формулы для расчета рез-ультаа ов анализа. В ати формулы входит постоянный множитель, называемый фактором пересчета F (аналитический множитель), который служит для вычисления содержания какого-либо компонента в анализируемой пробе, если известна масса весовой формы этого компонента. Напомним, что весовой формой называют соединение, которое взвешивают для получения окончательного результата анализа. Например, при гравиметрическом определении кальция, если его осаждают в виде оксалата, весовой формой может быть оксид кальция, образующийся при прокаливании осадка  [c.48]

    Указать преимущества и недостатки гравиметрического анализа. В каких случаях в практике отдается предпочтение гравиметрическому анализу по сравнению с другими методами  [c.56]

    Гравиметрические методы постепенно уступают место физикохимическим и физическим методам анализа, особенно в области исследований. Да и в практике химического анализа доля гравиметрических методов неуклонно уменьшается. Существенно, однако, что процессы осаждения и соосаждения привлекают внимание в связи с их использованием для разделения и концентрирования элементов, причем не только в аналитической химии. Кроме того, гравиметрические методы играют большую роль в элементном анализе органических соединений. [c.46]

    В монографию не включена теория и практика качественного анализа неорганических и органических веществ, а также методы идентификации органических соединений и универсальные методы разделения и концентрирования с применением неводных растворителей. Гравиметрические методы анализа неводных растворов не рассмотрены вследствие незначительного их применения в аналитической практике. [c.6]

    Что такое средняя проба Как ее отбирают и готовят к анализу 6. В чем состоит сущность гравиметрического анализа 7. Какие варианты гравиметрического анализа применяются на практике 8. Что такое весовая форма 9. Какие основные операции выполняют при переводе определяемой составной части вещества в весовую форму 10. Из каких основных частей состоят аналитические весы 11. Что такое навеска вещества Что значит взять навеску 12. Какие существуют приемы взятия точных навесок 13. Назовите основные операции при выполнении гравиметрического анализа осаждением. 14. Как ведут промывку декантацией 15. Как делают пробу на полноту промывки 16. Для чего осадок перед прокаливанием подсушивают 17. С какой целью проводят сжигание и озо-ление бумажного фильтра 18. Как подготавливают тигель для прокаливания Что значит прокалить тигель до постоянной массы 19. Что такое аналитический фактор Как его используют для расчетов результатов анализа  [c.106]

    Содержание лигнина в древесине и другом растительном сырье определяют преимущественно прямыми способами, основанными на количественном выделении лигнина, после предварительного удаления экстрактивных веществ соответствующей экстракцией, полным гидролизом полисахаридов концентрированными минеральными кислотами с последующим гравиметрическим определением количества лигнинного остатка [30]. Преимущественное применение получил сернокислотный метод. При анализе технических целлюлоз прямые методы используют главным образом в научно-исследовательской практике, а в производственном контроле обычно применяют косвенные методы, основанные на расчете содержания лигнина по расходу окислителя (чаще всего перманганата калия) на окисление остаточного лигнина. К косвенным методам относят также УФ-спектрофотометрический метод (см. 12.7.4). УФ-спектрофотометрию используют и для определения кислоторастворимого лигнина, переходящего в раствор при определении лигнина сернокислот- [c.374]

    Титриметрический анализ имеет ряд преимуществ перед гравиметрическим методом, а именно скорость выполнения определений, относительную простоту (несложность) операции, достаточную точность получаемых результатов. Указанные положения ставят титриметрические методы анализа на одно из первых мест в лабораторной практике химических, пищевых, металлургических и других производств. В этом виде анализа взвешивание заменяется измерением объемов как определяемого вещества, так и реагента, который применяется при данном определении. [c.318]


    Много внимания уделено гравиметрическим и титриметрическим методам, рассмотрены физико-химические и физические методы (электрохимические, методы, основанные на поглощении и испускании излучений). Кратко представлены рентгеновские и масс-спектрометрические методы, имеющие возрастающее значение в практике анализа. Совсем не упомянуты радиохимические и ядер-ко-физические методы, зато весьма основательно рассмотрены хроматографические методы, особенно газожидкостная хроматография. Авторы не делают никакого различия между неорганическими и органическими объектами анализа эти объекты всегда идут вперемежку, особенно это относится к многочисленным задачам. [c.7]

    Структура разделов, посвященных анализу отдельных компонентов, в основном идентична назначение метода, его сущность и методика анализа. Включение гравиметрического метода определения благородных металлов объясняется отсутствием других методов, обладающих лучшими аналитическими характеристиками. Всего приведено более 120 методик анализа. Учитывая быстрый рост числа аналитических работ, выбор рекомендуемого метода является довольно сложной задачей. При рекомендации тех или иных из них для практического применения мы руководствовались широтой их использования в аналитической практике. В некоторых методиках приведены химические уравнения, поскольку они имеют большое значение для анализа, а также приведены формулы для вычисления результатов. [c.12]

    Точность титриметрических определений приближается к точности гравиметрического анализа. Титриметрические определения часто применяют в техническом анализе. В титриметрическом анализе щиро-ко используют химические реакции различных типов. В агрохимической практике титриметрический анализ применяется шире, чем гравиметрия. [c.229]

    Почти до середины XX в. в практике аналитической химии использовали главным образом гравиметрический и титримет-рический методы анализа. Этими методами выполняли основную массу анализов в химической, горнодобывающей, текстильной и других областях промышленности, в строительстве, сельском хозяйстве и т.д. Гравиметрические и титриметрические методики имеют достаточно высокую точность и универсальность, сравнительно просты и не требуют какой-либо сложной аппаратуры или измерительных приборов. Существенным достоинством их является то, что при использовании этих методов можно обходиться без стандартных образцов и градуировочных графиков. Эти методы относятся к химическим методам, их часто называют также классическими, имея в виду их возраст и отработанность соответствующих методик. [c.11]

    Формально материалы справочника можно разделить на четыре части. В первой части приводятся сведения, необходимые химику-аналитику при использовании в практике наиболее распространенных методов анализа гравиметрического, титриметрическо-го и фотометрического, а также ряд полезных сведений общего характера. [c.5]

    Когда-то весь органический анализ практически отождествляли с анализом элементным — на углерод, водород, кислород, азот, серу, галогены. Функциональный анализ и анализ сложных смесей органических соединений играли меньшую роль. Сейчас положение существенно изменилось, но элементный анализ своего значения не потерял. Советские химики-аналитики внесли значительный вклад Б развитие элементного анализа, особенно микроанализа. К числу приемов, развитых в нашей стране, можно отнести метод многоэлементной экспресс-гравиметрии, электрометрическое и спектрофотометрическое определение гетероэлементов, аммиачный метод определения галогенов, кислорода, серы и металлов, безна-весочное определение стехиометрии элемеитоорганических соединений и др. Эти работы выполнены членом-корреспондентом АН СССР А. П. Терентьевым и его учениками, сотрудниками Института элементоорганических соединений АН СССР, Института органической химии им. Н. Д. Зелинского АН СССР и др. Большой вклад в органический микроанализ внесли М. О. Коршун, В. А. Климова, Н. Э. Гельман. Благодаря им были разработаны и внедрены в практику новые методы и аппаратура для гравиметрического многоэлементного анализа. [c.127]

    Один из наиболее старых методов определения политионатов основан на окислении их до сульфатов, которые затем определяют гравиметрически. Другой метод, предложенный для определения тритионата, основан на обработке анализируемого раствора сульфатом меди(II), при этом образуется СиЗ и Н2ЗО4. Тритионат можно определить в виде оксида меди (после сожжения СиЗ), алкалиметрически или гравиметрически в виде Ва304 119]. Этот метод, вероятно, не найдет широкого применения в практике анализа. [c.512]

    Проведенный выше раэбор систематических ошибок хими-t e Koro аяализа не претендует на исчерпывающую полноту. Из рассмотрения исключены некоторые виды ошибок, например, ошибка натекания и капельная ошибка в титриметрических методах анализа. Некоторые виды систематических ошибок только упомянуты. Основное внимание и наибольшее количество примеров посвящено ошибкам традиционных методов гравиметрического, титриметрического и фотометрического анализов. Такой стиль изложения оправдан целью данного раздела—дать общее представление о систематических ошибках химического анализа, способах их обнаружения и оценки и методах их уменьшения. Детальный разбор всех известных источников ошибок должен входить как составная часть в теорию и практику каждого отдельного метода химического анализа, ибо каждому методу присущи свои специфические ошибки". Удачным примером в этом плане может служить руководство по (фотоколориметрическим и спектрофотометрическим методам анализа М. И. Булатова и И. П. Калин-кина (Л, Химия , 1976, 376 с.), где этому вопросу уделено большое внимание. Однако сказанное в равной мере относится и к любым другим химическим и физическим методам, [c.48]

    Совершенно четко выявляется тенденция перехода от гравиметрических и объемных методов к физико-хи-мическим и физическим (особенно в количественном анализе). Однако это не означает полного отказа от классических методов. Во-первых, гравиметрический метод позволяет получать результаты с точностью определения, которая недостижима в других методах. Во-вторых, данный метод в настояшее время возрождается в виде термогравиметрического, перед которым открываются широкие перспективы и который успешно применяют для решения самых разнообразных вопросов теории и практики аналитической хи.мии. Совершенно не выдерживает критики тенденция перехода к монометоду спектральный, радиохимический, атомно-абсорбци-онный анализ. История развития аналитической химии ясно показывает, что многие забытые методы через некоторое время возрождаются, например метод кондук-тометрического титрования к шестидесятым годам модифицирован как высокочастотное титрование. Потенцио-метрия испытывает второе рождение на базе ионселек-тивных электродов, поляризованных электродов и т. д. [c.308]

    Все методы анализа основаны на использовании зависимости физико-химического свойства вещества, называемого аналитическим сигналом или просто сигналом, от природы вещества и его содержания в анализируемой пробе. В классических методах химического анализа в качестве такого свойства используются или масса осадка (гравиметрический метод), или объем реактива, израсходованный на реакцию (титриметрический анализ). Однако химические методы анализа не в состоянии были удовлетворить многообразные запросы практики, особенно возросшие как результат научно-технического прогресса и развития новых отраслей науки, техники и народного хозяйства в целом. Наряду с черной и цветной металлургией, машиностроением, энергетикой, химической промышленностью и другими традиционными отраслями большое значение для промышленноэнергетического потенциала страны стали иметь освоение атомной энергии в мирных целях, развитие ракетостроения и освоение космоса, прогресс полупроводниковой промышленности, электроники и ЭВМ, широкое применение чистых и сверхчистых веществ в технике. Развитие этих и других отраслей поставило перед аналитической химией задачу снизить предел обнаружения до 10 . .. 10 °%. Только при содержании так называемых запрещенных примесей не выше 10 % жаропрочные сплавы сохраняют свои свойства. Примерно такое же содержание примеси гафния допускается в цирконии при использовании его в качестве конструкционного материала ядерной техники. (Вначале цирконий был ошибочно забракован как конструкционный материал этой отрасли именно из-за загрязнения гафнием). Еще меньшее содержание загрязнений (до 10 %) допускается в материалах полупроводниковой промышленности (кремнии, германии и др.). Существенно изменяются свойства металлов, содержание примесей в которых находится на уровне 10 % и меньше. Например, хром и бериллий становятся ковкими и тягучими, вольфрам и цирконий становятся пластичными, а не хрупкими. Определение столь малых содержаний гравиметрическим или титриметрическим методом практически невозможно, и только применение физико-химических методов анализа, обладающих гораздо более низким пределом обнаружения, позволяет решать аналитические задачи такого рода. [c.4]

    То обстоятельство, что до сих пор электрометрические методы на практике не получили такого широкого применения, какого можно было бы ожидать, благодаря их очевидным преимуществдг, зависит главным образом от нежелания применять для аналитических целей аппаратуру, более сложную, чем обычно применяемые в аналитической практике примитивные вспомогательные средства. Конечно, это нежелание можно оправдать во всех тех случаях, где старые индикаторные методы дают приблизительно те же самые результаты. Удивительно, однако, то, что в новейшей литературе часто описываются весьма сложные гравиметрические методы анализов, которые можно выполнить с помощью электрометрического метода с большей точностью и в меньший промежуток времени. В США преимущества новейшего метода титрования были признаны уже во время войны и приурочены к целям военной промышленности. В большинстве случаев для серийных анализов потенциометрические методы можно раз-разработать так, чтобы их мог производить подсобный персонал. Если пользуются описанным в литературе электрометрическим методом, то нужно помнить, что, конечно, и в данном случае среди действительно ценных методов встречается. много и неудачных. Однако, неудачу следует приписывать не электрометрической методике, а скорее отсутствию тщательности в работе данного автора или же тому, что пренебрегли данными указаниями. [c.448]

    Палладий — один из главных компонентов природных и промышленных платинусодержащих продуктов. Отделение его от других металлов осуществляется легче, чем от остальных платиновых металлов. Как большие, так и малые количества палладия легко и с достаточной точностью определяются классическими методами. Поэтому в обычной аналитической практике для его определения сравнительно редко применяют спектрофотометрические методы, тем более что при анализе многих производственных материалов навеска образца обычно достаточно велика для применения классических гравиметрических методов. Однако при анализе руд количество платиновых металлов после их концентрирования редко превышает один миллиграмм и поэтому возникает необходимость в чувствительных методах их определения. Кроме того, часто, особенно при проведении аналитических исследований, химик-аналитик должен определять микрограммовые количества палладия. Спектрофотометрический метод, как и спектральный, можно легко приспособить для массовых анализов платиновых металлов, и поэтому в случаях, когда не требуется особой точности, этот метод позволяет быстро определять палладий. [c.209]

    Для определения содержания основного вещества необходимо применять прежде всего абсолютные ( прямые ) аналитические методы, т. е методы, которые позволяют непосредственно из значения измеряемого параметра рассчитать содержание с учетом стехиометрических коэффициентов. Такие методы характеризуются хорошей точностью (например, гравиметрические), однако они длительны и, следовательно, непригодны для рутинного анализа. К этой же группе можно отнести ряд титриметри-ческих методов, часто применяемых в практике анализа вследствие их простоты. В этих случаях наиболее правильными можно считать такие результаты анализа, когда найденное среднее значение не противоречит истинному содержанию или равно 100% при анализе особо чистых веществ, причем оценка статистической значимости проводится соответствующим методом, например, по критерию Стьюдента, с применением стандартного отклонения. Для текущих анализов достаточно выбрать уровень значимости а=0,05. [c.8]


Смотреть страницы где упоминается термин Практика гравиметрического анализа: [c.218]    [c.8]   
Смотреть главы в:

Химический анализ -> Практика гравиметрического анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ гравиметрический



© 2024 chem21.info Реклама на сайте