Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неоднородность структуры полимерных покрытий

    НЕОДНОРОДНОСТЬ СТРУКТУРЫ ПОЛИМЕРНЫХ ПОКРЫТИЙ [c.11]

    Таким образом, одной из характерных особенностей полимерных покрытий в отличие от блочных материалов является ярко выраженная неоднородность их структуры по толщине пленки, которая проявляется для покрытий различного химического состава, полученных из пленкообразующих разных классов. [c.23]

    Одна из особенностей полимерных покрытий состоит в том, что структура и свойства их неоднородны по толщине пленки и зависят от нее. Причина этого явления связана с неравномерным отверждением покрытий по толщине пленки и влиянием на этот процесс адсорбционного взаимодействия пленкообразующего с подложкой. Вследствие неодинаковой скорости отверждения неравномерное распределение внутренних напряжений в поверхностных слоях имеет место и при формировании блочных материалов. [c.105]


    Из изложенного видно, что существенную роль в формировании структуры и свойств полимерных покрытий играют поверхностные явления. В отличие от пленок и блочных материалов, процесс формирования покрытий имеет ряд специфических особенностей. Адсорбционное взаимодействие пленкообразующего с поверхностью твердых тел сопровождается формированием неоднородной дефектной структуры по толщине пленки. Изменение структуры по толщине пленки наблюдается для покрытий из пленкообразующих различного химического состава и класса (мономеров, олигомеров, растворов, расплавов и дисперсий полимеров). Характер изменения структуры по толщине покрытий определяется прочностью адгезионного взаимодействия и существенно зависит от текстуры подложки. Для покрытий с соотношением адгезионной к когезионной прочности большим 0,1—0,2 на границе с подложкой образуется слой толщиной 100—200 нм с однородной упорядоченной структурой из более мелких и плотно упакованных структурных элементов по сравнению с остальными слоями. Толщина таких слоев намного превосходит толщину монослоя, что свидетельствует о взаимодействии с поверхностью подложки не отдельных молекул, а образуемых ими надмолекулярных структур. [c.250]

    В гл. 1 рассмотрены специфические особенности старения полимерных покрытий, обусловленные неоднородностью их структуры и свойств по толщине пленки, с учетом структурных превращений на границе раздела полимер — подложка и полимер — наполнитель на разных стадиях старения. Обобщены результаты исследования влияния структурных превращений при старении покрытий на незавершенность релаксационных процессов, кинетику изменения внутренних напряжений и теплофизических параметров. Особое внимание уделено установлению взаимосвязи между долговечностью покрытий и внутренними напряжениями при различных условиях формирования и эксплуатации покрытий. Рассмотрены закономерности, устанавливающие влияние различных физико-химических факторов на характер этой зависимости при эксплуатации покрытий в атмосферных условиях и при использовании ускоренных методов старения. [c.6]

    Эти уравнения являются весьма упрощенными, так как в них не учтено влияние на величину внутренних напряжений различных физико-химических факторов скорости отверждения по толщине образцов, неоднородности их структуры и неравномерного распределения связей, природы подложки и др. Экспериментальные данные, полученные для различных полимерных покрытий [53—56], свидетельствуют об отсутствии однозначной зависимости внутренних напряжений от величины усадки и разности коэффициентов линейного расширения. Усадка максимальна в начальный период формирования, когда из системы удаляется наибольшее количество жидкой фазы или в полимеризации участвует наибольшее число функциональных групп. Однако на этой стадии отверждения в покрытиях практически не возникают внутренние напряжения. Резкое нарастание последних наблюдается при переходе системы в студнеобразное состояние вследствие замедления релаксационных процессов. Из этих данных следует, что внутренние напряжения определяются заторможенной усадкой. Значительное уменьшение усадки и коэффициента линейного расширения наблюдается при введении в полимерные системы активных наполнителей, взаимодействующих с полимером с образованием водородных или химических связей, однако внутренние напряжения при этом возрастают от 2 до 5 раз в результате резкого торможения релаксационных процессов. [c.39]


    Специфической особенностью полимерных покрытий является формирование в них неоднородной дефектной структуры по толщине и площади пленки вследствие адсорбционного взаимодействия пленкообразующего с подложкой. Различная скорость протекания физико-химических процессов при формировании полимерных покрытий сопровождается торможением релаксационных процессов и возникновением внутренних напряжений, соизмеримых в ряде случаев с адгезионной или когезионной прочностью системы. Одним из путей понижения внутренних напряжений является регулирование релаксационных процессов на границе полимер — подложка и полимер — наполнитель, что позволяет создавать в покрытиях однородную упорядоченную структуру. [c.65]

    На рис. 3.21 приведены данные о зависимости внутренних напряжений, теплофизических параметров и удельного сопротивления двухкомпонентных систем от соотношения ПА и ПВХ в смеси. Из рисунка видно, что с увеличением содержания ПВХ в системе наблюдается монотонное снижение удельного сопротивления и внутренних напряжений в пленках. Теплофизические характеристики совмещенных систем, как и других полимерных покрытий, изменяются антибатно нарастанию внутренних напряжений, а изменение внутренних напряжений в этих системах коррелирует с изменением прочности. Из этих данных следует, что при смешении полиамидных смол с поливинилхлоридом степень кристалличности и упорядоченности, характерная для полиамидных смол, снижается, а система в целом подчиняется закономерностям гетерогенных смесей. Эти закономерности хорошо согласуются с электронно-микроскопическими данными о структуре пленок из смесевых композиций (рис. 3.22). С увеличением концентрации ПВХ в системе из-за плохой совместимости компонентов наблюдаются агрегация структурных элементов и формирование неоднородной дефектной структуры. [c.116]

    Физико-механические показатели и внутренние напряжения, определяющие долговечность покрытий, зависят от степени неоднородности и дефектности надмолекулярной структуры. Исследование структурных превращений на различных стадиях формирования и старения полимерных покрытий свидетельствует о том, что внутренние напряжения концентрируются в полимерной матрице локально на границе раздела фаз или структурных элементов, отличающихся степенью упорядочения, а также на границе полимер-наполнитель и полимер-подложка [2, с. 441-459]. В соответствии с кинетической термофлуктуационной теорией это приводит к накоплению дефектов. В связи с этим внутренние напряжения являются мерой дефектности структуры, а снижение их может быть осу- [c.15]

    Казалось бы, пленки с наилучшими свойствами можно получить при полной коалесценции первичных латексных частиц, т. е. при максимальной гомогенизации структуры пленок и покрытий. Однако, как это ни парадоксально на первый взгляд, для повышения прочности необходима определенная степень неоднородности структуры. Неоднородность структуры способствует перегруппировкам, сглаживающим пики внутренних перенапряжений. Слияние поверхностных слоев полимерных глобул латекса в процессе образования пленки протекает довольно легко, поэтому для получения плотной пленки не требуется полной коалесценции содержимого глобул. Высокая упорядоченность расположения латексных глобул приводит к образованию прочного армирующего каркаса, состоящего из твердых яд р латексных частиц. Такой каркас связан с эластичной дисперсионной средой (поверхностными слоями) аутогезионными силами. Прогрев пленок при температурах, превышающих температуру текучести полимера, приводит к коалесценции ядер латексных частиц, полной гомогенизации пленки и соответственно к уменьшению прочности, [c.69]

    Фиксация пленки на подложке и воздействие на нее силового поля твердой поверхности существенно влияют и на физические процессы в адгезионном слое усадку, стеклование, ориентационные эффекты и т. д. Все это определенным образом сказывается на структуре пленок (рис. 1.2). В адгезионном слое молекулы пленкообразователя подвержены плоскостной ориентации, при этом формируется, как правило, менее совершенная структура, чем в массе полимерной пленки. По мере удаления от подложки степень ориентации и анизотропия пленок резко падают, а степень надмолекулярной организации полимера возрастает. Структурная неоднородность особенно заметна у покрытий, изготовленных из кристаллических полимеров. Из-за большого числа центров кристаллизации и малой [c.10]

    Кровельные материаяы являются разновидностью гидроизоляционных материалов. Одно из их основных качеств — способность отталкивать воду, то есть гидрофобность. Это свойство обеспечивается пропиточнои массой, составляющей значительную часть всего материала. Рулонные гидроизоляционные материалы представляют собой композицию, состоящую из основы, которая пропитывается битумом или битумно-полимерной массой, защитного слоя в виде посыпки определенного гранулометрического состава из каменного материала и наплавляемой полиэтиленовой пленки. Иногда вместо посыпки может быть использована алюминиевая или медная фольга. Одним из главнейших составляющих кровельного покрытия на основе битума или битумно-полимер-нои массы является пропиточная масса, придающая самому покрытию вместе с основой определенные, в первую очередь гидроизоляционные свойства. Любые гидроизоляционные материалы обладают двумя взаимосвязанными характеристиками внутренней структурой и качественными показателями (свойствами). Структура их определяется производственным процессом. Внутренняя структура, или строение, физических тел отражает определенный порядок связей и порядок сцепления частиц, из которых образованы физические тела. Структура гидроизоляционных материалов характеризуется химическими и физико-химическими связями между контактируемыми частицами разной степени дисперсности. Структура может быть однородной и смешанной. К однородным структурам относятся кристаллизационные, коагуляционные, конденсационные. Твердые вещества с неоднородной структурой называются аморфными. [c.371]


    Подобный же эффект наблюдается в многослойных металлических системах [2]. Аналогичное явление наблюдал Вествуд при абсорбции жирных кислот на поверхности кристаллов фтористого лития [90]. Если адсорбированная молекула десорбируется, полупетлевая дислокация получает возможность двигаться. Таким образом, достаточно прочно адсорбированные на поверхности твердого тела слои, лишенные миграционной подвижности, могут оказывать действие, обратное пластифицирующему эффекту адсорбционных слоев. Например, октадециламин, хемосорбированный на поверхности кристаллов хлорида серебра, затрудняет развитие пластических деформаций [79]. В работе [5] наблюдали упрочняющее действие полимерных покрытий, нанесенных на алюминиевый сплав. При этом было установлено существенное различие в дислокационной структуре приповерхностных слоев образцов с покрытием и без покрытия. У образца без покрытия плотность дислокаций в различных зернах крайне неоднородна. Наоборот, образец с покрытием содержал равномерную и густую сетку дислокаций. [c.164]

    В монографии рассмотрены методы определения внутренних напряжений при формировании и старении полимерных покрытий, проведены анализ и обобщение результатов исследований по разработке физико-химических основ повышения долговечности полимерных покрытий из пленкообразующих различных классов путем снижения в них внутренних напряжений. При изучении особенностей формирования и старения покрытий нз мономерных и олигомерных систем, растворов, расплавов и дисперсий полимеров было установлено, что величина, кинетика нарастания и ре.ц ксации внутренних напряжений существенно зависят от степени незавершенности релаксационных процессов, обусловленной неоднородностью структуры покрытий, различной скоростью формирования отдельных слоев, прочностью адгезионного взаимодействия на границе полимер — подложка и полимер — наполнитель. [c.5]

    Изгиб или коробление происходят в направлении поверхности с большей усадкой. Разная усадка слоев с двух противоположных поверхностей может быть обусловлена неодинаковой интенсивностью сушки и неоднородной структурой материала. При формировании полимерных систем в виде тонких пленок на поверхности твердых тел в слоях толщиной 0,2 мкм, непосредственно прилегающих к поверхности твердого тела, возникает структура, существенно отличная по морфологии, размеру, плотности, концентрации связей, густоте пространственной сетки и другим параметрам от структуры остальных слоев. Эти данные были получены при применении методов эллипсомет-рии, ИКС, электронной микроскопии, поляризационно-оптического и др. [69—72]. При взаимодействии с подложкой происходит изменение не только структуры полимера, но и его физического состояния по толщине пленки. Так, например, при формировании покрытий из синтетических каучуков различного химического состава на поверхности стеклянных и металлических подложек с уменьшением толщины покрытий высокоэластические свойства их ухудшаются. Поэтому покрытия из таких каучуков толщиной менее 30 мкм не могут применяться в качестве эластичного подслоя, обеспечивающего релаксацию внутренних напряжений при формировании покрытий из жесткоцепных полимеров на таком подслое. В результате адсорбционного взаимодействия релаксационные процессы в граничных слоях становятся практически полностью заторможенными, а усадка их — незавершенной. Иные закономерности в изменении этих параметров выявлены для других слоев, и особенно для слоев, граничащих с воздухом. Изменение структуры и свойств этих слоев в процессе формирования свидетельствует о знали-тельной их усадке. [c.49]

    При создании дублированных материалов с полимерным покрытием регулирование свойств покрытий в нужном направлении может быть осуществлено при использовании смесевых композиций. Широкое применение для получения покрытий и клеевых слоев в производстве дублированных материалов находят поливинилхлорид, а также смеси полихлоропреновых каучуков с различным содержанием хлора. Совмещение ПВХ с по-лихлоропреновыми каучуками в растворе не дает возможности получать покрытия с однородной структурой. В качестве растворителей применяли этилацетат и бензин, а также их смеси. При изучении реологических свойств было установлено, что растворы исходных компонентов представляют собой системы ньютоновского типа, а смесевая композиция является слабо структурированной системой. Несмотря на то что исходные растворы смесевой композиции представляют собой прозрачные системы, в процессе удаления растворителя вследствие неодинаковой растворимости отдельных компонентов наблюдается агрегация структурных элементов. На рис. 3.29 представлены данные о структуре покрытий из смеси с соотношением компонентов 1 1. Видно, что структура покрытий состоит из набора структурных элементов с совершенно разной морфологией, характерной для ПВХ и хлоропренового каучука. Неоднородная структура наблюдается как при формировании покрытий при 20, так и при 80 °С. После прогрева размер структурных элементов, характерных для ПВХ, существенно уменьшается, но сохраняются. " ра-ница раздела между структурными элементами разных компонентов и неравномерное распределение их в пленке. Формирование неоднородной структуры в пленках из смесевых компози- [c.126]

    Специфика формирования полимерных покрытий связана с возникновением неоднородной дефектной структуры по толщине пленки вследствие неодинаковых скорости и условий отверждения различных слоев [51]. Одним из способов резкого понижения внутренних напряжений в полимерных покрытиях является использование пленкообразующих с регулярным строением молекул. Причина этого явления в таких системах связана с особенностями структурообразования, обусловленными формированием в жидкой фазе однородной упорядоченной структуры из )азвернутых макромолекул п фиксированием ее в покрытиях 180]. Эта особенность структурообразования наглядно проявляется при формировании покрытий из олигоэфиракрилатов различного строения. На основании реологических, физико-механических, теплофизических и структурных данных было установлено, что при получении покрытий из олигомеров на первой стадии их формирования образуются локальные связи между небольшим числом молекул с одновременным формированием надмолекулярных структур, а на второй стадии между этими структурами возникают связи и образуется пространственная сетка. На последней стадии вследствие торможения релаксационных процессов наблюдается резкое нарастание внутренних напряжений. Из данных об изменении реологических свойств олигоэфирмалеинатов на различных этапах их отверждения следует, что исходные олигомеры представляют собой системы ньютоновского типа. Через определенный период времени наблюдается не только нарастание вязкости, но и изменение характера реологических кривых, связанное с переходом системы в структурированное состояние за счет возникновения связей между структурными элементами. На рис. 5.1 приведены данные о кинетике расходования двойных связей, нарастании внутренних напряжений, прочности при растяжении, модуля упругости и вязкости при формировании покрытий из этих, же систем. Из рисунка видно, что, несмотря на участие в процессе полимеризации на начальной стадии формирования значительного числа функциональных групп, покрытия характеризуются низкими внутренними напряжениями и физико-механическими характеристиками. Резкое нарастание последних наблюдается [c.182]

    На рис. 6.7 приведены данные о влиярнги природы поверхности частиц наполнителя на структуру полиэфирных покрытий, сформированных ири 80 С на стальной подложке из исходных и модифицированных винилэтоксисилоксаном композиций, содержащих 18",, (об.) диоксида титана рутильной модификации. Из рисунка видно, что в покрытиях из исходных композиций формируется неоднородная структура более упорядоченная, ориентированная около частиц наполнителя, и дефектная-во всем объеме полимерной матрицы. В модифицированных композициях модификатор адсорбируется с образованием химических связей на поверхности частиц наполнителя, препятствуя возникновению частиц со специфической надмолекулярной структурой. Это способствует формированию упорядоченной структуры в полимерной матрице, повышению прочности покрытий и снижению внутренних напряжений. [c.173]

    Неоднородности и дефекты, связанные с механизмом образования структуры и ее природой (например, наличие контракцион-ных пор в кристаллизационных структурах гидратационного твердения, дефекты в полимерных покрытиях, связанные с механизмом выделения новой полимерной фазы и спецификой отверждения Неоднородности и дефекты, наведенные в результате несовершенства технологического процесса получения материала [c.261]


Смотреть страницы где упоминается термин Неоднородность структуры полимерных покрытий: [c.43]    [c.10]    [c.252]    [c.251]    [c.95]   
Смотреть главы в:

Структура и свойства полимерных покрытий -> Неоднородность структуры полимерных покрытий




ПОИСК





Смотрите так же термины и статьи:

Неоднородность структуры

Полимерные покрытия



© 2025 chem21.info Реклама на сайте