Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вообще о спиртах

    А вообще спирты (по предложению Берцелиуса) иначе называют [c.17]

    Здесь можно обсуждать лишь высококипящие вещества с соответственно низким давлением пара. Вообще спирты по своим свойствам уступают полигликолям с низкой молекулярной массой. Некоторыми преимуществами спирты обладают при разделении алифатических аминов, первичных, вторичных и третичных спиртов. [c.142]

    А вообще спирты (но предложению Берцелиуса) иначе называют алкоголями. [c.245]


    Водный раствор спиртов не проводит электрического тока следовательно спирты не ионизированы, что видно также из того, что такой раствор не обладает щелочной реакцией, т. е. не содержит ионов ОН. Вместе с этим возникает вопрос, обладают ли вообще спирты основными свойствами. [c.63]

    Полярные же растворители-разбавители, такие, как изобутиловый и изопропиловый спирты, кетоны, хлорпроизводные и др., являются в ряде случаев более эффективными, чем углеводородные. И хотя стоимость их превышает стоимость углеводородных разбавителей, но использование их во многих случаях может быть оправдано, поскольку эти разбавители повышают эффективность действия активаторов, а иногда даже позволяют обойтись без активаторов вообще. Последнее обусловливается тем, что такие растворители обладают способностью не только разбавлять обрабатываемый продукт, по и растворять некоторое хотя и небольшое количество карбамида. Действие активаторов в [c.143]

    Все эти превращения обратимы, однако отщепление воды от спиртов (и вообще от гидроксилсодержащих соединений) может происходить в двух направлениях как внутри- или межмолекуляр-ное  [c.183]

    Раньше н-пропиловый спирт был вообще мало доступен, изобутиловый получали из СО и Н2 под давлением (стр. 527), а н-бутило-вый — многостадийным синтезом из ацетальдегида, сохранившим некоторое значение и до настоящего времени  [c.536]

    Этиловый спирт можно получать из этилена двумя способами сернокислотной гидратацией и прямой гидратацией. Второй метод может иметь по сравнению с первым известные преимущества, за исключением случаев, когда на месте производства синтетического спирта имеются потребители разбавленной серной кислоты. Этиловый спирт в основном используют для производства ацетальдегида, уксусной кислоты, уксусного ангидрида и -бутилового спирта. Ацетальдегид и уксусную кислоту можно также получать из ацетилена или прямым окислением пропана и бутана . В другом способе получения уксусного ангидрида из нефти исходят из пропилена (через ацетон). Нормальный бутиловый спирт производят в настоящее время каталитической гидроконденсацией пропилена с окисью углерода. Однако все эти пути обхода этанола как сырья не затормозили расширения производства синтетического спирта. Перед войной в США из этилена получали только 10% этилового спирта, а в 1956 г. — больше 70%. В Англии перед войной этиловый спирт из этилена вообще не производили. В 1956 г. доля синтетического спирта в общем его производстве составила 33—40%, а сейчас строится новый завод, который увеличит эту долю до 60—70%. [c.403]


    Изомеризация олефиновых углеводородов была отмечена еще Ф. М. Флавицким [9]. Он показал, что продажный амилен, получаемый из амилового спирта брожения действием цинка, состоит главным образом из триметилэтилена. Ф. М. Флавицкий объяснял это изомеризацией н-пентана, считая, что вообще олефиновые углеводороды стремятся к образованию изомеров с возможно большим числом СНд-групп. [c.560]

    Хлорангидриды и ангидриды кислот применяются в тех случаях, когда реакция этерификации проходит с трудом или провести ее вообще не удается. Последнее обстоятельство может быть вызвано либо малой реакционной способностью карбоновой кислоты, либо ее неустойчивостью или неустойчивостью соответствующего спирта в условиях этерификации. [c.168]

    Влияние давления. Как показывает опыт, скорость некоторых каталитических реакций весьма существенно зависит и от давления. Особенно это характерно для реакций, идущих с изменением объема. Увеличение давления положительно сказывается на скорости таких реакций. Некоторые каталитические реакции вообще не могут идти при нормальном давлении, например реакции синтеза высших спиртов и др. [c.163]

    Помимо общих положений о влиянии природы адсорбтива на адсорбцию имеется и ряд частных правил. Так, с увеличением молекулярного веса способность вещества адсорбироваться возрастает. Именно поэтому алкалоиды, а также красители, обладающие обычно высокими молекулярными весами, хорошо адсорбируются. Замечено также, что ароматические соединения вообще адсорбируются лучше, чем алифатические, а непредельные соединения лучше, чем насыщенные. Наконец, так же как и при адсорбции на границе раствор — воздух, при адсорбции жирных кислот и спиртов на твердых веществах качественно соблюдается известное правило Траубе. [c.141]

    В этом параграфе речь пойдет о важном в термодинамике растворов понятии о парциальных мольных величинах. Отчасти о них уже шла речь в гл. V в связи с химическим потенциалом, являющимся, с другой стороны, парциальным мольным изобарным потенциалом. Остановимся на этом понятии подробно. Допустим, речь идет об объеме раствора. Равен ли он сумме объемов компонентов Вообще говоря, не равен. Например, при смешении этилового спирта с водой общий объем уменьшается. Объем раствора может быть и меньше и больше, суммы объемов компонентов, взятых в отдельности. Но все-таки каждый компонент вносит свой вклад в объем или другое экстенсивное свойство раствора (например, энергию и т. д.). Для оценки этого вклада и применяются парциальные мольные величины. [c.264]

    На рис. VII.7 представлены кривые зависимости относительного давления пара метилового, этилового, пропилового и бутилового спиртов над водными растворами при 25° С от их мольной доли N. Видно, как в ряду 1—Сз увеличивается отклонение от закона Рауля и как у. бутилового спирта появляется ограниченная растворимость. При повышении температур (уменьшение Р до значений < 2) растворимость становится неограниченной и у этого спирта. Следовательно, у системы вода — бутиловый спирт налицо верхняя критическая температура растворимости. В целом следует признать, что наблюдаемая картина (рис. VI 1.7) похожа на результаты вычисления по уравнению Ван-Лаара (рис. УП.б). Вообще же явление может быть более сложным и наряду с верхней критической температурой возможно появление и нижней. Примером тому могут служить растворы никотина в воде [р(Ы-метил- а-пирролидил)- пиридин] (рис VI 1.8). [c.276]

    Вообще по отношению к кислотам и основаниям главной причиной, определяющей диссоциирующую способность растворителя, является не столько их диэлектрическая проницаемость, сколько их химическая природа. Однако в ряду спиртов или карбоновых кислот диссоциация кислот, оснований и солей зависит от диэлектрической проницаемости растворителя. Таким образом, правило Каблукова — Нернста — Томсона применимо только в пределах одной группы растворителей. [c.109]

    Любое растворенное вещество может взаимодействовать с растворителем различными путями, но на примере каждого из пяти веществ, приведенных в табл. 17-2, видно, насколько важно специфичного вида полярное взаимодействие. Бензол может взаимодействовать с жидкой фазой по электронно-донорному механизму замечено, что селективное удерживание бензола сходно с удерживанием других потенциальных доноров электронов, таких как галоидные алкилы. Бутанол и вообще спирты являются донорами протонов участие в образовании водородной связи с жидкой фазой во многом определяет механизм взаимодействия этих соединений, из них те предпочтительно удерживаются жидкими фазами, у которых активные центры являются акцепторами протонов. Селективное удерживание 2-пентанона обусловлено сильными ди поль-дипольными взаимодействиями с данной жидкой фазой показано, что любые карбонилсодержащие соединения удерживаются селективно. Удерживание нитропропана можно принять как доказательство электронно-донорных свойств жидкой фазы можно ожидать, что жидкости, которые селективно удерживают нитропропан, будут в общем селективно удерживать соединения с электроне-акцепторными свойствами. Пиридин может взаимодействовать с жидкой фазой путем обобществления своих несвязанных электронов таким образом, пиридин может принимать участие в образовании водородных связей. [c.576]


    По офицкгальной женевской номенклатуре метиловый спирт называется метанол. Суффикс ол присвоен всем спиртам. Вообще говоря, в названия всех других соединений не должен входить этот суффикс. Однако в некоторых языках ароматические углеводороды носят названия бензол , толуол и ксилол . Эта традиция заимствована у немецких химиков, а американцы ее не одобряют [c.87]

    Коррозия металла в химических производствах вообще и особенно в производстве аинтетического спирта довольно частое яв- [c.83]

    Такое химическое модифицирование поверхности твердого тела путем прнзиакн больших инертных групп резко снижает энергию адсорбции не только молекул, способных специфически взаимодействовать с гидроксильными группам (например, азота, этилена, бензола, эфира, спиртов и т. п.), но и всех молекул вообще. Это происходит в результате того, что при образовании подобных модифицирующих слоев молекулы адсорбата, во-первых, не могут прянти в соприкосновение непосредственно с основным скелетом твердого тела и, во-вторых, они приходят в соприкосновение с гораздо меньшим числом атомоз, поскольку расстояния между смежными группами СН.ч в модифицирующем слое соответствуют их ван-дер-ваальсовым размерам, а расстояния между атомами кислорода и кремния в основном скелете кремнезема соответствуют гораздо более коротким расстояниям химических связей. [c.503]

    Можно утверждать, что без катализа вообще была бы невозможна жизнь. Достаточно сказать, что лежащий в основе жизнедеятельности процесс ассимиляции двуокиси углерода хлорофиллом растений является фотохимическим и каталитическим процессом. Простейшие органические вещества, полученные в результате ассимиляции, претерпевают затем ряд сложных превращений. В химические функции живых клеток входит разложение и синтез белка, жиров, углеводов, синтез различных, часто весьма сложных молекул. Таким образом, клетка является своеобразной и весьма совершенной химической лабораторией, а если учесть, что все эти процессы каталитические — лабораторией каталитической. Катализаторами биологических процессов являются особые вещества —ферменты. Если сравнивать известные нам неорганические катализаторы с ферментами, то прежде всего поражает колоссальная каталитическая активность последних. Так, 1 моль фермента алкогольдегидрогеназа в 1 сек при комнатной температуре превращает 720 моль спирта в уксусный альдегид, в то время как промышленные катализаторы того же процесса (в частности, мeдь)J при 200° С в 1 сек превращают не больше 0,1 — 1 моль на один грамм-атом катализатора. Или, например, 1 моль фермента каталазы при 0°С разлагает в одну секунду 200 000 моль перекиси водорода. Наиболее же активные неорганические катализаторы (платиновая чернь) при 20° С разлагают 10—80 моль перекиси в 1 сек на одном грамм-атоме катализатора. Приведенные примеры показывают, что природные биологические катализаторы во много раз превосходят по активности синтетические неорганические катализаторы. Высокая специфичность и направленность действия, а также способность перерабатывать огромное количество молекул субстрата за короткое время при температуре существования живого организма и позволяет ферментам в достаточном количестве давать необходимые для жизнедеятельности соединения или уничтожать накапливающиеся в процессе жизнедеятельности бесполезные, а иногда и вредные продукты. [c.274]

    В ( го Диссертации о действии химических растворителей вообще это явление описано так При употреблении достаточно крепк01 0 селитряного спирта для растворения металлов растворение быстро кончается, так как растворитель перестает действовать . [c.303]

    Впервые экспериментальный процесс с реверсом подачи газовой смеси описан в монофафии Д. А. Франк-Каменецкого. Этому описанию посвящен единственный абзац. Для окисления изопропилового спирта на медном катализаторе стационарное автотермическое проведение процесса оказалось вообще невозможным . Процесс удалось вести без внешнего подофева, только используя своеобразное явление мифации зоны реакции. Толщина слоя катализатора делалась весьма большой, и зона реакции не держалась стационарно в одном месте, но перемещалась по слою катализатора попеременно то в том, то в другом направлении. После того как зона реакции доходила до конца слоя катализатора, производилось переключение направления подачи спирто-воздушной смеси, и таким образом менялось направление мифации. При таком способе ведения про- [c.306]

    Те<нология щелочного винилирования. Все рассмотренные реакци винилирования проводятся только в жидкой фазе при бар-ботировании ацетилена через реакционную массу, содержащую 10—20% КОН, растворенпого в реагенте. Ввиду высокой температуры лишь реакции с высшими спиртами или вообще с высококипящими соединениями можно проводить при давлении, близком к атмосферному, В процессах винилирования низших спиртов для поддержания реакционной массы в жидком состоянии требуется давле ние от 0,5 до 2—2,5 МПа. [c.303]

    Энергетическая характеристика реакций окисления. Все реакции окисления, нашедшие применение в промышленности основного органического и нефтехимического синтеза, необратимы. Это не означает, что их вообще нельзя провести в обратном направлении (восстановить, например, кислоты в альдегиды, а карбонильные сое щнения — в спирты и углеводороды), но, цля осуществления [c.355]

    По-видимому, впервые экспериментальный процесс с реверсом подачи газовой смеси описан в монографии Д. А. Франк-Каменецкого [2]. Этому описанию посвящен единственный абзац. Для окисления изопропилового спирта на медном катализаторе стационарное автотер-мическое проведение процесса оказалось вообще невозможным. Процесс удалось вести без внешнего нодогре- [c.97]

    Одним из реальных путей получения многоатомных спиртов является каталитическое гидрирование и гидрогенолиз (деструктивное гидрирование) углеводов. Химическая технология углеводов вообще обладает большими потенциальными возможностями, еще не раскрытыми полностью. Ресурсы непищевого углеводсодержа-шего сырья — полисахаридов, содержащихся в низкокачественной древесине и древесине мягколиственных пород, в отходах обработки древесины, хлопка, — составляют сотни миллионов тонн и, [c.5]

    Непрерывно удаляя спирт, напрпмер отюбкой с водяным паром, легко можно довести эту равновесную реакцию до конца. Таким путем удается получить целый ряд спиртов, которые раньше были или вообще технически недоступны, или же доступны в очень ограниченном масштабе. [c.431]

    Старейшим из этих соединений является этанол, или этиловый спирт, часто называемый просто спиртом . Он вообще самый первый химический продукт, с которым познакомился человек. Впервые его упоминал нод тене-решыим названием Парацельсиус в 16 веке. До 1930 г. в промышленности этанол получали исключительно спиртовым брожением сахаров с выходом 90%. Брожение содержащегося в меляссе сахара протекает по уравнению [c.433]

    Некоторые сторонники перекисной теории (см. ниже) считают теорию гидроксилирования вообще несостоятельной. Они указывают, что для принятия ее необходимо допустить предварительную диссоциацию молекул ки Jюpoдa на атомы, так как непонятно, каким образом реагирует молекулярный кислород. Допущение же диссоциации О,, 20 неприемлемо, так как ни энергетически, ни экспериментально это необосновано. Однако некоторые факты не оправдывают столь резкой критики, так как в определенных условиях при окислении углеводородов могут получаться и спирты (например, при холоднопламенном окислении, стр. 196). Все же остается неясным вопрос, являются ли последние первичными продуктами окисления углеводородов или же они образуются в результате вторичных реакций. [c.181]

    Отдельные вещества, причисляемые теперь к органическим соедине- иям, были известны человечеству еще в древности, хотя в чистом виде их удалось получить лищь значительно позже. Уже доисторическим народам, стоявшим на первобытных ступенях развития культуры, было известно искусство превращать путем брожения сахаристые соки в спиртные напитки из винограда делали вино, из ячменя древние египтяне и древние германцы приготовляли особый вид пива, из меда — хмельной спиртовый напиток, также называвшийся медом. Процесс винокурения с выделением спирта из содержащих его жидкостей путем перегонки стал известен лишь гораздо позднее, во времена алхимии (около 900 г.). Название алкоголь (а1-КоЬо1), применявшееся древними арабами для обозначения всех легколетучих веществ вообще, впервые было дано спирту Парацельсом оно сохранилось и до настоящего времени. [c.1]

    Распространенное ранее мнение, что гидроксильные группы вообще не могут существовать у двойных связей, в столь обн ей форме не вполне правильно. В настоящее время известны многие соединения, правда, обычно более сложные или содержащие несколько атомов кислорода, которые устойчивы и могут быть выделены не только в карбонильной форме г, но и в виде непредельного спирта — енольной формы в, например  [c.142]

    Низшие гликоли представляют собой вязкие бесцветные жидкости, высшие гликоли — кристаллические вещества. Многие из них, например этиленгликоль СН2ОНСН2ОН, обладают сладким вкусо.м. Она мало ядовиты для животных и не оказывают опьяняющего действия, но у людей прием больших количеств гликолей вызывает вредные последствия. Гликоли легко раствори.мы в воде и этим отличаются от высших одноатомных спиртов. Вообще увеличение числа гидроксильных [c.301]


Смотреть страницы где упоминается термин Вообще о спиртах: [c.300]    [c.52]    [c.178]    [c.382]    [c.304]    [c.310]    [c.330]    [c.520]    [c.68]    [c.438]    [c.445]    [c.595]    [c.189]    [c.49]    [c.192]    [c.168]    [c.100]   
Смотреть главы в:

Высшие жирные спирты -> Вообще о спиртах




ПОИСК







© 2025 chem21.info Реклама на сайте