Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура и полиморфизм

    Полиморфизм. В зависимости от внешних условий одно и то же вещество может иметь разные по симметрии и структуре кристаллы. Способность данного твердого тела существовать в виде двух или нескольких кристаллических структур называется полиморфизмом. Различные кристаллические структурные формы вещества называются полиморфными модификациями. Явление полиморфизма очень распространено. Почти все вещества при известных условиях могут быть получены в различных модификациях. [c.144]


    Кремнезем обладает сложным полиморфизмом, т. е. способностью менять кристаллическую структуру при изменении внешних термодинамических условий. В настоящее время известно более десяти форм кристаллического кремнезема, три вида кремнеземистого стекла, а также аморфный кремнезем. [c.25]

    Явление полиморфизма имеет большое значение и в технике. Например, ос- и у-железо значительно отличается по механическим, магнитным и другим свойствам у-структура, обладающая более высокими механическими свойствами, устойчива при температуре выше 910° С, но может сохраниться при быстром охлаждении стали до низких температур. В этом состоит сущность закалки стали. Продолжительное нагревание ниже 910° С ускоряет обратное превращение у->а (отжиг). Переходы кремнезема из одной полиморфной формы в другую при нагревании имеют большое значение в технологии обжига керамических изделий и кремнистых огнеупорных минералов. Широко известным примером полиморфных превращений в технике является оловянная чума —переход белого олова в серое. [c.54]

    Аллотропия может быть обусловлена или различным числом атомов данного элемента в молекуле вещества, например кислород О2 и озон Оз, или различной кристаллической структурой образующихся модификаций, например олово серое и белое. Способность веществ при определенных температурах (давлениях) образовывать в твердом состоянии различные типы кристаллических структур называют полиморфизмом. Полиморфные модификации могут иметь не только простые вещества, но и соединения. Например, для 81С известно более сорока модификаций. Для обозначения аллотропных и полиморфных модификаций используют греческие буквы а, р, 7 и т. д., где а — самая низкотемпературная модификация. При нагревании до определенной температуры происходит переход к следующей модификации, которая обычно имеет менее плотную упаковку. [c.245]

    Аллотропные видоизменения элементарного вещества — это вещества, молекулы которых различны, хотя и образованы атомами одного и того же химического элемента. Свойства аллотропных видоизменений одного и того же элемента, проявляемые в различных агрегатных состояниях, различны. Способность одного и того же вещества существовать в различных кристаллических формах называют полиморфизмом. Он может быть двух видов энантиотропный, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотропный, когда одно видоизменение устойчивее другого независимо от температуры. Энантиотропные полиморфные видоизменения, таким образом, подобны агрегатным состояниям одного и того же вещества. Монотропные полиморфные видоизменения являются, по существу, аллотропными видоизменениями в кристаллическом состоянии. Таким образом, границы понятий аллотропии и полиморфизма не вполне совпадают. Следует отметить, что во многих случаях элементарные вещества в жидком и газообразном состояниях содержат молекулы, различные как по числу атомов, так и по структуре. Относительное содержание этих различных молекул в массе элементарного вещества зависит от температуры и других условий, причем изменение этих условий обычно приводит к возврату соответствующих равновесий. В связи с этим, а также с трудностью изоляции отдельных форм молекул последние не принято считать самостоятельными аллотропными видоизменениями. Известным примером таких элементарных веществ является сера, которая в газовом состоянии содержит молекулы четырех видов — За, 5 , (цепе-) и 5 (цикло-). [c.37]


    Важную информацию приносит и рентгенофазовый анализ исходных кристаллических форм и продуктов, получившихся в результате прогрева. Пользуясь этим методом, можно регистрировать различия кристаллических структур как одного и того же вещества (полиморфизм), так и различных веществ сложной системы. [c.74]

    Таким образом, при образовании простых веществ из элементов в общем случае выделяются две стадии химического превращения атом — молекула и молекула — координационный кристалл Уже на первой стадии из одного элемента может образоваться несколько простых веществ. Например, из элемента кислорода образуются два простых вещества Оа и Оз, различающихся составом, строением, а следовательно, и свойствами. Элемент сера в парообразном состоянии существует в виде молекул 5,, 5 , причем равновесие между различными молекулярными ( )ормами зависит от температуры. На второй стадии образования простых веществ возникающие координационные кристаллы в зависимости от внешних параметров равновесия — температуры и давления — существуют в различных структурах (полиморфизм) Одному элементу соответствует несколько простых веществ (полиморфные модификации), различающихся типом кристаллической решетки ромбическая и моноклинная сера, белый, красный и черный фосфор, ГЦК и ОЦК модификации железа и т. п. [c.28]

    Путем перекристаллизации глюкозы из различных растворителей можно выделить две формы о-глюкозы (называемые а и р), которые отличаются по своей температуре плавления, а также удельным вращением свежеприготовленных растворов (это является подтверждением того, что обнаруженное отличие не является следствием полиморфизма — свойства кристаллической структуры). Однако при выдерживании свежеприготовленных растворов а-о-глюкозы (удельное вращение+110°) и р-о-глюкозы (удельное вращение +19,7°) вращающая способность растворов медленно изменяется и в конце концов достигает одной и той же величины - -52,5°. Это явление, называемое жу-таротацией , обусловлено медленным выравниванием соотношения С (1)-эпимеров возможно, оно осуществляется через образующуюся в небольшой концентрации открытую альдегидную или соответствующую диольную форму. Это взаимопревращение значительно ускоряется в присутствии следов кислоты или основания. [c.268]

    Изменение радиусов атомов -металлов в зависимости от заполнения подуровня -электронами показано на рис. 162. Для элементов всех периодов характерен минимум, лежащий приблизительно в середине ряда -металлов данного периода. Снижение металличности атомов данного элемента сказывается и на строении кристаллической решетки. Типы кристаллических решеток для -металлов, многие из которых обладают полиморфизмом или аллотропическими модификациями, приведены в табл. 12.2. Как видно из таблицы, низкотемпературные модификации марганца не имеют типичной для металлов структуры, а при высоких температурах его структура приближается к структуре железа. [c.312]

    В твердом состоянии молекулы углеводородов расположены упорядоченно, образуя кристаллы различной структуры. В зависимости от числа атомов углерода в молекуле и температуры кристаллизации индивидуальные н-парафины, относящиеся к полиморфным соединениям, могут кристаллизоваться в четырех формах гексагональной (а-форма), орторомбической (р-форма), моноклинной (у-форма) и триклинной (б-форма), причем последние две формы имеют угол наклона осей молекул к плоскости, в которой расположены концевые группы, соответственно 73° и 61°30. В кристаллах гексагональной структуры молекулы н-парафинов расположены так, что длинные оси их перпендикулярны плоскости, в которой расположены концевые группы молекул. При такой упаковке молекулы имеют свободу вращения вокруг своих длинных осей. Орторомбическая структура характеризуется таким же расположением молекул, однако отсутствие гексагональной симметрии обусловливает только колебательные движения молекул около своего среднего положения. Такая же форма движения имеет место и в случаях моно- и триклинной структуры кристаллов. Схематическое расположение молекул парафинов нормального строения в кристаллах разной модификации показано на рис. 28, а размеры элементарных ячеек приведены в работе [4], где указано на возможность образования кристаллов с 13 различными параметрами. Полиморфизм присущ всем нечетным н-па-рафинам, начиная с Сэ, и четным от С22 до С36. [c.120]

    Применение методов высокотемпературной рентгенографии для изучения полиморфизма железа позволило получить ряд принципиальных результатов. Только с его помощью удалось показать, что кристаллические структуры а- и -модификаций аналогичны, что превращение Р- в у-модификацию заключается в перестройке ОЦК структуры в ГЦК структуру, что б-модификация железа, так же как а- и р-модификации, обладает ОЦК структурой (Вест-грен, 1921 г.). . [c.162]

    При кристаллизации низкомолекулярных жидкостей также возможно образование надмолекулярных структур различного типа, в том числе отдельных монокристаллов и их сферолитных сростков. Однако у кристаллических полимеров надмолекулярный полиморфизм проявляется значительно отчетливее и характеризуется значительно большим разнообразием фиксируемых промежуточных форм, большими вариациями во взаимном расположении конструкционных элементов надмолекулярной структуры, которые гораздо более чувствительны к изменениям условий кристаллизации, чем в случае низкомолекулярных веществ. Последняя особенность обусловлена длинноцепным строением полимерных молекул. Благодаря гибкости макромолекулы отдельные ее участки могут относительно независимо участвовать в процессе кристаллизации, диффундируя и подстраиваясь к растущим кристаллам, как самостоятельные кинетические единицы. Но эта независимость. [c.177]


    Метод сопоставления экспериментальных кривых интенсивности с теоретическими, вычисленными по формуле (2.107), был использован Н. А. Ватолиным и Э. А. Пастуховым при исследовании структурных превращений в жидком железе, никеле и кремнии. Установлено, что в жидком железе возможен полиморфизм при 1550°С упаковка атомов в расплаве соответствует объемно-центрированной решетке, а при 1700°С размещение атомов в нем описывается кубической гранецентрированной структурой. В никеле и кремнии структурный переход происходит в процессе плавления этих веществ. [c.60]

    Переход вещества из одного состояния в другое называется полиморфным превращением (или переходом), а само явление - способность веществ существовать в нескольких состояниях с различной кристаллической структурой - полиморфизмом. [c.91]

    В первом разделе (гл. 1—3) даны физико-химические основы процессов получения красителей в дисперсном состоянии, рассмат-рива отся кристаллическая структура, полиморфизм и другие морфологические и физико-химические особенности кубовых и дисперсных красителей. Специальное внимание уделено описанию методов дисперсионного анализа, применяемых при изучении процессов диспергирования и контроле размеров частиц, а также дисперсного состава выпускных форм. [c.4]

    Явление аллотропии у металлов прежде всего связано с тем, что энергии кристаллических решеток различных металлических структур близки. Полиморфизм чаще всего проявляется у (1- и /-элементов (в особенности 5/), чем у 5- и р-элементов. Это обусловлено энергетической близостью (п — 1) - и П5-, пр-состояний у -элементов и близостью 5/-, М-, 75-состояний у 5/-элементов. [c.256]

    Экспериментальное определение молекулярной массы ромбической и моноклинной серы показывает, что молекулы серы состоят из восьми атомов, несмотря на различие модификаций. Следовательно, различие в свойствах этих аллотропных видоизменений обусловлено не различным числом атомов в молекуле (как это имело место в О2 и О3), а неодинаковой структурой формой кристаллов. Такое явление называется полиморфизмом. [c.181]

    Полиморфизм. В зависимости от внешних условий одно и то же вещество может иметь разные по симметрии и структуре кристаллы. Способность данного вещества существовать в виде двух или нескольких кристаллических структур называется полиморфизмом. Разные к])исталлические структурные формы вещества называют полиморфными модификациями. [c.111]

    Полиморфизм простых веществ является частным случаем аллотропии химических элементов, под которой подразумевают способность элемента существовать в различных формах (модификациях). Как понятие аллотропия шире, чем полиморфизм, охватывающий лишь изменения в структуре твердого тела. [c.125]

    Для железа и кобальта характерен полиморфизм, в то время как никель мономорфен и вплоть до температуры плавления обладает ГЦК-структурой. Кобальт имеет две полиморфные модификации — низкотемпературную сс-Со (ГПУ) и высокотемпературную Р-Со (ГЦК), причем переход наблюдается при 450 С. У железа. 3 полиморфные модификации а-Ре (ОЦК), 7-Ре (ГЦК) и 6-Ре (ОЦК). Переход а-Ре->Р-Ре при 769 С — это точка Кюри. В структурном же отношении а и Р-Ре лишь слегка различаются по параметру ОЦК-решетки. [c.401]

    Поскольку металлическая связь ненасыщаема и ненаправлена, мета. лы имеют координационные решетки с максимально плотной упаковкой. Как указывалось выше (см. рис. 65), для металлических простых веществ самых разнообразных по химической природе элементов наиболее типичны три типа кристаллических решеток кубическая гранецентрированная (к. ч. 12), гексагональная (к. ч. 12) и ку()ическая объемноцентрированная (к. ч. 8). Для большинства металлов характерна аллотропия. Это прежде всего связано с тем, что энергии кристаллических решеток различных металлических структур близки. Полиморфизм чаще проявляется у ii- и /-элементов (в особенности 5/), чем у S- и р-элементов. Это обусловлено энергетической близостью п — 1) d-, ns-, пр-состояний у ( -элементов и близостью 5/-, bd-, 7з-состояний у 5/-элементов. [c.233]

    Полиморфизм — это способность вемкств существовать в виде двух или нескольких кристаллических структур. Примером полиморфизма являются аллотропные тформы углерода алмаз, графит и карбин. Графит имеет слоистую, карбин — цепную, а алма — координационную решетку. Разные кристаллические структурные формы вещества называют полиморфными модификациями. [c.95]

    Аллотропия может быть обусловлена или различным числом атомов данного элемента в молекуле этого вещества, например кислорода О2 и озона Оз, или различной кристаллической структурой образующихся модификаций, например алмаза и графита. Способность веществ при определенных температурах (давлениях) образовывать в твердом состоянии различные типы кристаллических структур называют полиморфизмом. К образованию полиморфных модификаций способны не только простые вещества, но и соединения например, А12О3 имеет девять модификаций. Аллотропные и полиморфные модификации обозначают греческими буквами а, р, у и т. д., где а — самая низкотемпературная модификация. Низкотемпературные модификации обычно имеют наиболее плотную упаковку атомов в кристаллах. При нагревании осуществляется переход их. к более рыхлой структуре, при этом возрастает неупорядоченность в кристалле (А5> 0) и появляются новые кристаллические структуры.  [c.224]

    Трехкальциевый алюминат С3А. Этот минерал не проявляет полиморфизма, плавится с разложением при 1815 К с образованием СаО и расплава. СзА имеет кубическую решетку, но структура его не известна. Видимо, СзА растворяет оксид магния MgO (до 2,5%), который замещает СаО СзА также растворяет до 9% ЫагО, причем при достижении концентрации Na20 3% происходит изменение симметрии кристалла из кубической в орторомбическую. В промышленных клинкерах С3А содержит MgO. С3А способен растворять также SIO2, четыре атома А1 замещаются тремя атомами Si. [c.234]

    Отжиг — это как бы вторичная кристаллизация, Б процессе которой происходит совершенствование кристалли- , .9. Зависимость удель-ческои структуры и увеличеиие Г,,.,- ,,го объема от темпера-В процессе отжига при Г, близкоп к 7 .п, туры для кристаллического поможет происходить также переход од- -тимера в процессе нагревания ной кристаллической формы полимера в другую (результат полиморфизма). плавле нн  [c.179]

    Полиморфизм. Некоторые вещества (простые или сложные) в зависимости от условий кристаллизации могут образовывать кристаллы различной формы и внутренней структуры. Это явление получило название полиморфизма (греч. poly—много, многое morphe — форма polymorphos — многообразный). [c.126]

    В аависимости от условий одно и то же вещество может иметь различную кристаллическую структуру. Это явление называется полиморфизмом ( многоформенностью ). Температура и давление влияют на степень заполнения пространства частицами веществ. При понижении температуры и увеличении давления образуются более плотные структуры, характеризующиеся повышенными значениями координационных чисел частиц. Высокие температуры и низкие давления способствуют разрыхлению структуры и понижению координационных чисел. [c.96]

    Для всех трех металлов характерно отсутствие полиморфизма. Вплоть до температуры плавления они обладают объемно центрированной кубической решеткой. Эта решетка, сравнительно неплотно упакованная для металлов (к. ч. 8), является высокоэнтропийной и характеризуется меньшей упорядоченностью, чем более плотные ГЦК- и ГПУ-структуры. [c.336]

    Простые вещества. Физические и химические свойства. В компактном состоянии все элементы подгруппы марганца представляют собой металлы серебристо-белого цвета. Прежде всего следует отметить, что в отличие от технеция и рения, не имеющих полиморфных модификаций и образующих кристаллы с плотноупакованной ге-сагональной структурой (к. ч. 12), для марганца характерен полиморфизм он образует четыре полиморфные модификации [c.374]

    В качестве особого случая морфотропии можно рассматривать изменение кристаллической структуры одного и того же вещества при изменении внешних условий. Явление это носит название полиморфизма. Последний характерен для очень многих веществ. Примером молсет служить переход при нагревании структур галогенидов аммония от типа s l к типу Na l  [c.382]

    Физические и химические свойства. Гомоатомные соединения всех трех элементов представляют собой тугоплавкие серебристо-белые металлы, обладающие высокой пластичностью, ковкостью, износоустойчивостью. Характерной особенностью всех трех металлов является полиморфизм. При обычных условиях они кристаллизуются в ГПУ-структуре. С повышением температуры увеличивается энтропия и происходит перестройка в более рыхлую спгруктуру ОЦК. Эта закономерность является общей для металлов высокотемпературные модификации являются, как правило, менее плотноупакованными. [c.391]


Смотреть страницы где упоминается термин Структура и полиморфизм: [c.13]    [c.199]    [c.112]    [c.49]    [c.144]    [c.153]    [c.172]    [c.176]    [c.124]    [c.33]    [c.73]    [c.321]    [c.28]    [c.36]    [c.276]    [c.275]   
Смотреть главы в:

Неорганические стеклообразующие системы -> Структура и полиморфизм




ПОИСК





Смотрите так же термины и статьи:

Полиморфизм



© 2025 chem21.info Реклама на сайте