Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Принципы определения структуры в рентгеноструктурном анализе

    Подобное непонимание роли принципа плотной упаковки в органической кристаллохимии было обусловлено прежде всего невозможностью определения методом рентгеноструктурного анализа положения атомов водорода. И до сих пор ряд исследователей, описывая, например, кристаллические структуры углеводородов, показывают на чертежах расположение только атомов углерода, характеризуют упаковку молекул расстояниями между атомами углерода, вне зависимости от того, четвертичные ли они или входят в группы СН, или СНа, или СНз- Нетрудно видеть, что при таком анализе структуры действительно может создаться впечатление пе только об отсутствии каких-либо закономерностей в отношении межмолекулярных расстояний, но и о неприменимости принципа плотной упаковки к органиче- [c.83]


    Принципы определения структуры в рентгеноструктурном анализе [c.532]

    Наиболее заманчиво использовать информацию об аминокислотной последовательности для предсказания третичной структуры белковой молекулы, а отсюда, возможно, и ее функции. Некоторые принципы и положения, применяемые для решения этой задачи, изложены в гл. 5. Здесь мы приведем один результат, который иллюстрирует современное состояние этой области исследования. На рис. 2.14 проведено сравнение трехмерной структуры ингибитора трипсина из поджелудочной железы быка, определенной методом рентгеноструктурного анализа, с модельной структурой, построенной на основании данных об аминокислотной последовательности, в которых использовалась информация о термодинамике взаимодействий между аминокислотными остатками. Исходной считалась вытянутая конформация. Чтобы проследить процесс укладки молекулы, рассчитывали силы, действующие между различными остатками, полученные из данных об энергии их взаимодействия. В результате достигли неплохого качественного согласия между [c.71]

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]


    Высокая каталитическая активность, регулярная структура и способность к ионному обмену делают цеолиты уникальными объектами для изучения гетерогенного катализа. После переведения в соответствующие формы путем ионного обмена эти кристаллические алюмосиликаты по своей активности и селективности становятся значительно более эффективными катализаторами, чем аморфные алюмо-силика.ты Ц], хотя такую закономерность и нельзя распространять на все реакции [2]. Цеолиты являются кристаллическими веществами с развитой пористостью, поэтому их внутренняя поверхность определяется системой пор, которая регулярно повторяется в трехмерном пространстве. В этом отношении цеолиты выгодно отличаются от большинства других гетерогенных катализаторов, в том числе и кристаллических, где активные центры расположены главным образом на внешних гранях или в дефектных узлах решетки. Таким образом, данные, полученные рентгеноструктурным анализом или каким-либо спектроскопическим методом, в принципе можно использовать для определения структурных особенностей каталитически активных центров. (В действительности, однако, такие попытки успехом не увенчались [3], потому что методы рентгеновского анализа оказались слишком малочувствительными, чтобы можно было выявить локализацию активных центров.) Разнообразие каталитических свойств цеолитов объясняется прежде всего тем, что существует несколько различных типов кристаллических. каркасов и что методами регулируемого ионного обмена структурные особенности каркасов можно модифицировать. Для выяснения механизмов реакций особое значение имеет тот факт, что изменение структуры цеолитов непосредственно отражается на каталитических свойствах. [c.5]

    Современные научные данные об атомной архитектуре химических веществ получены главным образом в результате рентгеноструктурного изучения кристаллов. Ранние рентгенографические исследования привели к установлению структур многих элементов и простых соединений, а также к разработке важных основных принципов, таких, например, как различия между молекулярными и немолекулярными кристаллами. При этом было установлено, что имеются существенные различия в силах, приводящих к образованию химической связи и удерживающих атомы вместе в различных типах веществ. По мере развития техники рентгеноструктурного анализа появилась возможность определения структуры все более сложных соединений, что в конце концов позволило расшифровать структуры молекул белка, построенных из тысяч атомов. Параллельно с прогрессом в этом направлении была повышена и точность определения истинных межъядерных расстояний и валентных углов между атомами в молекулах, что позволило сформулировать точные принципы, относящиеся к структуре молекул. [c.769]

    Другая проблема, также связанная с подготовкой кристаллов к съемке, возникла значительно позже, когда в принципе была решена фазовая проблема и встала задача получения кристаллов изоморфных производных. На первых же порах, после получения прекрасных дифракционных снимков глобулярных белков, требовалось решить вопрос об их расшифровке. В чем же заключалась новизна рентгеноструктурного анализа глобулярных белков по сравнению с анализом малых молекул и фибриллярных белков Суть рентгеноструктурного анализа любого монокристалла состоит в определении амплитуд всех дифрагированных лучей (отражений) и их фаз. Зная амплитуды и фазы, можно воспроизвести распределение электронной плотности элементарной кристаллической ячейки и, следовательно, найти ее геометрические параметры, а также параметры структуры образующих ее молекул. Амплитуды определяются по интенсивностям рефлексов, но найти фазы путем непосредственных измерений нельзя. В связи с этим как в кристаллографии малых молекул, так и в кристаллографии белков возникает так называемая фазовая проблема - основная проблема расшифровки любой кристаллографической структуры. В рентгеноструктурном анализе малых молекул для ее решения разработаны прямой метод, метод Паттерсона, метод проб и ошибок, метод изоморфного замещения. Со временем каждый из них приобрел целый ряд [c.40]

    Ядерный магнитный резонанс (ЯМР) — еще один спектроскопический метод, способный давать информацию о структуре биополимеров, о взаимодействиях между молекулами и о молекулярном движении. Особые преимущества этого метода состоят в том, что 1) теория развита достаточно хорошо, так что в принципе из спектров ЯМР можно в деталях определить расположение индивидуальных атомов в молекуле 2) можно определить число и положение атомов водорода, локализация которых с помощью рентгеноструктурного анализа представляет собой сложную и трудоемкую процедуру, и 3) могут быть отдельно исследованы различные атомы (например, Н, Ы, С и Р). ЯМР был очень успешно применен для определения структуры малых молекул (например, с молекулярным весом <500). Однако в случае макромолекул его возможности еще не реализованы из-за огромного числа спектральных линий, часто плохо разрешенных, больших трудностей в идентификации атома, дающего определенную линию, и ввиду значительного числа взаимодействий, в которых может участвовать каждый атом. [c.481]


    Полная структура ДНК была установлена Д. Уотсоном и Ф. Криком в 1953 г. на основании определения химического состава и данных рентгеноструктурного анализа. Оказалось, что молекула ДНК состоит из двух спиралей, имеющих одну и ту же ось и противоположные направления. Сахарофосфатный остов располагается по периферии двойной спирали, а азотистые основания находятся внутри. Остов содержит ковалентные фосфодиэфир-ные связи, а обе спирали между основаниями соединены водородными связями и гидрофобными взаимодействиями. Водородные связи между основаниями строго специфичны, и этот факт имеет очень большое значение как для структуры ДНК, так и для ее биологической функции. Эти связи были открыты и изучены Э. Чарга( зфом в 1945 г. и получили название принципа комплементарности, а особенности образования водородных связей между основаниями называются правилами Чаргаффа. [c.45]

    Важную группу полисахаридов составляют гликозаминогликаны, к которым относятся гиалуроновая кислота, хондроитинсульфаты и кератансульфат. Было показано, что в ориентированных пленках молекулы этих соединений в зависимости от типа присутствующих катионов могут принимать целый ряд взаимо-превращаемых конформаций [12]. Эти конформации представляют собой группу левых спиралей, упакованных антипараллельно и отличающихся в основном степенью растянутости. Наиболее сжатой является одна из конформаций гиалуроновой кислоты, в которой одна молекула закручена вокруг другой с образованием двойной спирали [13] во всех остальных случаях молекулы упакованы бок о бок . В некоторых случаях удалось детально выяснить строение молекул, что для волокнистых веществ, в отличие от кристаллических, очень трудно сделать удалось даже выявить положение молекул воды и геометрию участков молекул, координированных вокруг катионов [14]. Важными вехами на пути понимания конформационных принципов строения полисахаридных цепей стали а) первый пример установления с помощью, рентгеноструктурного анализа упорядоченной конформации разветвленного полисахарида (внеклеточного полисахарида Е. oli) это позволило предположить, что наличие ветвлений играет важную роль при ориентации боковых цепей антипараллельно основной цепи и стабилизации таким образом конформации молекул полисахарида посредством нековалентных взаимодействий [15] б) первое изучение этим же методом структуры кристаллического гликопротеина, которое показало упорядоченность конформации его углеводной части [16]. Ко времени опубликования работы [16] определение строения (F -фрагмента иммуноглобулина G) не было доведено до конца, однако уже можно было сделать ряд важных выводов, которые будут рассмотрены ниже. [c.283]

    Гласкер Дж., Трублад К. АНАЛЮ Ю ИСГАЛЛИЧЕСКШ СТРУКТУРЫ. Пер. с англ., М., "Мир", 1974, 1 р. 06 коп. Книга представляет собой краткое введение в рентгеноструктурный анализ монокристаллов, адресованное студентам - химикам и физикам, а также исследователям, которые, не являясь специалиста-ми-кристаллографами, хотят иметь представление о принципах, лежащих в основе определения кристаллической и молекулярной структуры. По уровню и характеру изложения книга близка к монографии П. Уитли "Определение молекулярной структуры" ("Мир", 1970). [c.588]

    Первым из указанных методов определения полной структуры молекулы является рентгеноструктурный анализ [1, 2]. В принципе с помощью дифракции рентгеновских лучей можно определить структуру любого вещества, существующего в кристаллической форме. Этот метод применялся для определения всех конформационных деталей структуры таких сложнейших молекул, как селебиксантон [3] и витамин В13 [4] (рис. 3-1). [c.166]

    Другие низкоспиновые координированные комплексы. Данные рентгеноструктурного анализа [15, 93] показывают, что координированный цианид-анион наклонен относительно каркаса порфирина. Согласно принципу электронейтральности Полинга [173, 174], как цианид-анион, так и окись углерода должны быть связаны с атомом углерода линейно. В случае цианидметмиоглобина предполагается, что угол Ре—С—N составляет 130°. Поскольку в карте разностной электронной плотности цианидный лиганд плохо разрешен, в работе 93] предполагается, что атом углерода занимает шестое координационное место в комплексе, т. е. то же самое, которое занимает молекула воды. Однако с точки зрения электронной структуры [173, 174] связь Ре—С должна быть несколько короче. Хендриксон и Лав [15] указывают, что в цианидметгемогло-бине морской миноги координирующий атом углерода смещен на 100 пм от нормали к плоскости порфирина, проведенной через атом железа (рис. 9). В то время как результаты обоих исследований указывают, что стереохимия, предсказываемая принципом электронейтральности, соблюдается не совсем точно, вероятно, вследствие стерических препятствий со стороны ближайщих аминокислотных остатков, не имеется количественных данных для более точного определения геометрии лиганда. В обоих случаях был сделан вывод о том, что атом азота цианидного лиганда образует водородную связь с имидазольным кольцом дистального остатка гистидина. Невозможно четко оценить, насколько значительно разли- [c.71]

    За исключением этих различий, методы дифракции нейтронов и рентгеновских лучей похожи друг на друга, и нет необходимости вновь излагать общие принципы, которые уже обсуждались в главах, посвященных дифракции рентгеновских лучей. Поэтому можно сразу рассмотреть несколько примеров использования дифракции нейтронов для рещения структурных задач. Следует учесть, что вследствие малой распространенности источников нейтронов дифракцией нейтронов занимается сравнительно немного исследователей по сравнению с очень больщим числом специалистов по рентгеноструктурному анализу. Поэтому исследуемые проблемы следует выбирать очень тщательно. Никто не станет использовать дифракцию нейтронов для определения, например, структуры нитрата калия, так как это можно сделать гораздо проще и не менее точно с помощью дифракции рентгеновских лучей. Только в том случае, когда структура имеет какие-то аспекты, которые трудно изучить с помощью дифракции рентгеновских лучей, целесообразно заняться нелегкой работой по измерению интенсивности рассеянных нейтронов. Поэтому больщин-ство исследований методом дифракции нейтронов связано с определением положений атомов водорода. [c.201]

    Для полуколичественной характеристики третичной структуры и ее изменений могут быть использованы гидродинамические константы белка — характеристическая вязкость [i ll, константа седиментации S и константа диффузии D, — двойное лучепреломление и некоторые другие показатели. Однако точное знание третичной структуры может быть достигнуто только с помощью рентгеноструктурного анализа. Этот метод широко использовался для изучения расположения атомов в кристаллах простых неорганических и органических соединений и может быть применен только к кристаллическому материалу или материалу, обладающему определенной регулярностью в структуре. Конечной целью анализа дифракции рентгеновых лучей является определение координат всех атомов. Знание этих координат позволяет построить трехмерную, пространственную модель молекулы, в которой в определенном порядке расположены все составляющие ее атомы. Детальное обсуждение принципов рентгеноструктурного анализа не вхо- [c.117]

    Не могли быть использованы для глобулярных белков методы рентгеноструктурного анализа фибриллярных белков. Рентгенограммы последних вследствие неполной упорядоченности и нестрогой регулярности волокон содержат небольшое число рефлексов (5-50), которые к тому же, как правило, диффузны. Они получаются за счет дифракции рентгеновских лучей на регулярных участках волокон. На основе столь бедной рентгенограммы нельзя даже в принципе вьшолнить полное и независимое определение на атомном уровне структуры фибриллярного белка. Иными словами, число неизвестных (координаты атомов) в этой задаче намного превышает число уравнений, которые могут быть составлены для их определения на основе известных экспериментальных данных (положений и интенсивностей рефлексов). Волокнистая структура и нерастворимость таких белков делают практически невозможной их кристаллизацию с хорошей трехмерной упорядоченностью. Поэтому с помощью анализа рентгенограмм фибриллярных белков можно преследовать лишь ограниченную цель идентификации типа регулярных структур пептидного скелета и возможного способа его аранжировки. Сначала создается ориентировочная модель, причем только регулярной части белка, рассчитьшается картина рентгеновской дифракции этой модели, которая затем сопоставляется с наблюдаемой рентгенограммой. Путем изменения модели добиваются наиболее полного совпадения теоретической и экспериментальной дифракционных картин. Но и такая задача далеко не всегда решается однозначно. Поэтому при рентгеноструктурном анализе фибриллярных белков большое значение имеют дополнительные данные о структуре, полученные иным образом, с помощью привлечения спектральных методов, структурных параметров родственных молекул, информации о плотности, механических свойствах и т.д. Расчет дифракционной картины, соответствующей предполагаемому спиральному строению фибриллярного белка, выполняется на основе теории интерференции рентгеновских лучей спиральными структурами, разработанной Кокраном и Криком [77]. Обзор методов рентгеноструктурного исследования фибриллярных белков содержится в работе К. Холмса и Д. Блоу [174]. [c.42]

    В настоящее время тонкую (на атомном уровне) структуру макромолекулы можно определить только при помощи рентгеноструктурного анализа до сих пор не существует другого метода, который дал бы больший толчок к изучению макромолекул. (Отметим, например, к какому развитию генетики привело определение структуры ДНК-) Зная несколько тонких структур, мы не только можем установить правила определения структуры молекул данного тина, но также получить тестовые (с известной структурой) молекулы для изучения их другими методами, что даст возможность интерпретировать полученные данные. К сожалению, рентгеноструктурный анализ — очень сложный и трудоемкий метод, и часто требуются годы для установления структуры белка или макромолскулярного комплекса. Обычно в книгах, посвященных исследованию биологических макромолекул, приводится общее описание теории дифракции рентгеновских лучей. Однако в данной книге оно отсутствует по двум причинам во-первых, маловероятно, что читатели, за некоторым исключением, будут применять этот метод или им придется расшифровывать рентгенограмму во-вторых, фактически невозможно исчерпывающе объяснить принципы и аналитические методы в ют-ге такого объема, как эта. Однако во всех разделах книги нрнведсны ссылки на литературу, в которой читатель может получить информацию о каждом конкретном методе анализа. [c.8]


Смотреть страницы где упоминается термин Принципы определения структуры в рентгеноструктурном анализе: [c.11]    [c.9]   
Смотреть главы в:

Практическая химия белка -> Принципы определения структуры в рентгеноструктурном анализе




ПОИСК





Смотрите так же термины и статьи:

Анализ определение

Анализ рентгеноструктурный



© 2025 chem21.info Реклама на сайте