Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Принципы методов рентгеноструктурного анализа

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]


    Высокая каталитическая активность, регулярная структура и способность к ионному обмену делают цеолиты уникальными объектами для изучения гетерогенного катализа. После переведения в соответствующие формы путем ионного обмена эти кристаллические алюмосиликаты по своей активности и селективности становятся значительно более эффективными катализаторами, чем аморфные алюмо-силика.ты Ц], хотя такую закономерность и нельзя распространять на все реакции [2]. Цеолиты являются кристаллическими веществами с развитой пористостью, поэтому их внутренняя поверхность определяется системой пор, которая регулярно повторяется в трехмерном пространстве. В этом отношении цеолиты выгодно отличаются от большинства других гетерогенных катализаторов, в том числе и кристаллических, где активные центры расположены главным образом на внешних гранях или в дефектных узлах решетки. Таким образом, данные, полученные рентгеноструктурным анализом или каким-либо спектроскопическим методом, в принципе можно использовать для определения структурных особенностей каталитически активных центров. (В действительности, однако, такие попытки успехом не увенчались [3], потому что методы рентгеновского анализа оказались слишком малочувствительными, чтобы можно было выявить локализацию активных центров.) Разнообразие каталитических свойств цеолитов объясняется прежде всего тем, что существует несколько различных типов кристаллических. каркасов и что методами регулируемого ионного обмена структурные особенности каркасов можно модифицировать. Для выяснения механизмов реакций особое значение имеет тот факт, что изменение структуры цеолитов непосредственно отражается на каталитических свойствах. [c.5]

    Первым из указанных методов определения полной структуры молекулы является рентгеноструктурный анализ [1, 2]. В принципе с помощью дифракции рентгеновских лучей можно определить структуру любого вещества, существующего в кристаллической форме. Этот метод применялся для определения всех конформационных деталей структуры таких сложнейших молекул, как селебиксантон [3] и витамин В13 [4] (рис. 3-1). [c.166]

    В последнем разделе курса — электронно-оптических методах анализа структуры и состава вещества — самое большое внимание уделено методу просвечивающей (дифракционной) микроскопии. В связи с широким применением электронной микродифракции в электронномикроскопических изображениях кристаллов данный раздел органически связан со всем предыдущим содержанием курса. Это касается не только общих принципов дифракции, но и конкретных задач, решаемых в рентгеноструктурном анализе и в методе дифракционной электронной микроскопии. Наиболее целесообразная комбинация этих методов в практике исследовательской работы должна учитывать статистический характер информации, который присущ методам рентгеноструктурного анализа, и очень высокую степень локальности информации электронной микродифракции и особенно [c.8]


    Принципы методов рентгеноструктурного анализа [c.218]

    Многие белки могут существовать в виде хорошо образованных кристаллов, что в принципе делает возможным установление их строения методом рентгеноструктурного анализа. Возникающие при этом проблемы весьма нелегки, поскольку даже в маленькой молекуле белка, например инсулина, надо установить положение 700 атомов (не считая [c.511]

    Использование электронных спектров для получения структурной информации прекрасно иллюстрируют результаты исследования электронной структуры иона ванадила [38]. При интерпретации спектра ва-надил-иона VO полагают, что в связи V — О имеет место значительное я-связывание. Соединения, в которых, согласно данным рентгеноструктурного анализа, содержится группа VO , дают сходные электронные спектры переноса заряда и в твердом состоянии и в растворе. Поэтому можно предположить, что водные растворы этих комплексов содержат группы УОЩ О) , а не ViH O) . Протонирование VO в принципе должно заметно влиять на спектр переноса заряда. Предполагается, что кислород не протонируется, поскольку его основность ослаблена из-за образования я-связи с ванадием. Полный расчет по методу МО для VOiHjO) представлен в статье [38], там же дано отнесение полос в спектре водного раствора V0S04-5H20. Аналогичные исследования других окси-катионов также свидетельствуют о значительном п-связывании металл — кислород [39] и помогают установлению электронной структуры этих частиц. [c.108]

    Принцип структурно-химического соответствия нашел подтверждение и в работах, посвященных изучению фазового состава катализаторов методами рентгеноструктурного анализа. [c.179]

    Многие белки могут существовать в виде хорошо образованных кристаллов, что, по крайней мере в принципе, делает возможным полное установление их строения методом рентгеноструктурного анализа. Возникающие при этом проблемы весьма нелегки, поскольку даже в маленькой молекуле белка, например инсулина, надо установить положение 700 атомов (не считая атомов водорода). Рентгеноструктурное исследование, оказавшееся чрезвычайно цен  [c.125]

    Многие белки могут существовать в виде хорошо образованных кристаллов, что в принципе делает возможным установление их строения методом рентгеноструктурного анализа. Возникающие при этом проблемы весьма нелегки, поскольку даже в маленькой молекуле белка, например инсулина, надо установить положение 700 атомов (не считая атомов водорода). Рентгеноструктурное исследование, оказавшееся чрезвычайно ценным источником сведений о структуре белков, приводит ко все большим успехам в установлении деталей их структуры, Например, на ранних стадиях исследования структуры железосодержащего белка миоглобина достигнутое разрешение составляло 6 А, что не позволяло увидеть индивидуальные атомы, но указывало на скрученную форму пептидных цепей, обвивающих матрицу, состоящую из молекул воды (т. е, давало возможность установить третичную структуру). Увеличение разрешения до 2 А позволило установить положение большинства индивидуальных аминокислот, основываясь на форме содержащихся в них заместителей (первичная и вторичная структура). [c.389]

    Принципы применения дифракционных методов, незави симо от того, применяются в качестве излучения рентгеновские лучи, электронные лучи или поток нейтронов, очень сходны. Шире всего используется метод рентгеноструктурного анализа. Задачи, решаемые этим методом, очень разнообразны. В зависимости от целей исследования и характера объекта можно выделить три направления, существенно отличающихся друг от друга как по экспериментальному оформлению, так и по приемам обработки полученных данных исследование монокристаллов, исследование поликри- сталлических тел и исследование неполностью кристалличе  [c.50]

    Подобное непонимание роли принципа плотной упаковки в органической кристаллохимии было обусловлено прежде всего невозможностью определения методом рентгеноструктурного анализа положения атомов водорода. И до сих пор ряд исследователей, описывая, например, кристаллические структуры углеводородов, показывают на чертежах расположение только атомов углерода, характеризуют упаковку молекул расстояниями между атомами углерода, вне зависимости от того, четвертичные ли они или входят в группы СН, или СНа, или СНз- Нетрудно видеть, что при таком анализе структуры действительно может создаться впечатление пе только об отсутствии каких-либо закономерностей в отношении межмолекулярных расстояний, но и о неприменимости принципа плотной упаковки к органиче- [c.83]

    Наиболее заманчиво использовать информацию об аминокислотной последовательности для предсказания третичной структуры белковой молекулы, а отсюда, возможно, и ее функции. Некоторые принципы и положения, применяемые для решения этой задачи, изложены в гл. 5. Здесь мы приведем один результат, который иллюстрирует современное состояние этой области исследования. На рис. 2.14 проведено сравнение трехмерной структуры ингибитора трипсина из поджелудочной железы быка, определенной методом рентгеноструктурного анализа, с модельной структурой, построенной на основании данных об аминокислотной последовательности, в которых использовалась информация о термодинамике взаимодействий между аминокислотными остатками. Исходной считалась вытянутая конформация. Чтобы проследить процесс укладки молекулы, рассчитывали силы, действующие между различными остатками, полученные из данных об энергии их взаимодействия. В результате достигли неплохого качественного согласия между [c.71]


    В рассмотренной конформационной теории белка не постулируется образование в процессе структурной самоорганизации вторичных, регулярных структур. а-Спирали и р-складчатые листы должны автоматически появляться по ходу расчета на тех участках последовательности, где они оказываются самыми предпочтительными по энергии. Не привлекаются также данные рентгеноструктурного анализа белков и результаты их статистической обработки. Физическая теория и соответствующий расчетный метод исходят только из отмеченных выше четырех принципов, знания аминокислотной последовательности и валентной схемы белковой молекулы. Таким образом, в отношении пространственного строения белка теория является априорной. Предсказание трехмерной структуры строится на количественной оценке взаимодействий между всеми валентно-несвязанными атомами. При этом, однако, не требуется делать специальных предположений о роли в пространственной организации белковой молекулы водородных связей, ионных пар, дисульфидных мостиков и других видов взаимодействий. Так называемые гидрофобные [c.106]

    Электронография — это метод исследования строения вещества, основанный на дифракции электронов. Принципы электронографии практически ничем не отличаются от основ рентгеноструктурного анализа. [c.82]

    Принцип молекулярного моделирования. Этот подход в сочетании с рентгеноструктурным анализом позволяет установить стереохимические особенности молекулы лекарственного вещества и биорецептора, конфигурацию их хиральных центров, измерить расстояния между отдельными атомами, фуппами атомов или между зарядами в случае цвиттер-ионных структур лекарства и биорецепторного участка его захвата. Получаемые таким образом данные позволяют более целенаправленно проводить синтезы биоактивных молекул с заданными на молекулярном уровне параметрами. Этот метод был успешно использован в синтезе высокоэффективных анальгетиков - аналогов морфина, а также для получения ряда лекарственных веществ, действующих на центральную нервную систему подобно природному нейромедиатору у-аминомасляной кислоте (фенигама и др., см. разд. 2.5.3). [c.15]

    Кристаллические структуры силикатов являются традиционным объектом рентгеноструктурного анализа. Невозможность растворения силикатов без их разрушения исключает исследование их строения химическими методами, основанными на переводе изучаемого объекта в раствор с сохранением целостности если не всего соединения, то по крайней мере входящих в его состав анионных радикалов. Неудивительно поэтому, что вся кристаллохимия силикатов была создана благодаря использованию дифракционных методов исследования кристаллических структур. Первые работы по исследованию строения силикатов связаны с именем Брэгга и его учеников. Позднее крупнейший вклад в кристаллохимию силикатов был внесен советскими исследователями — Н. В. Беловым и его школой. Ниже кратко описываются результаты исследований кристаллических структур силикатов и их ближайших аналогов — германатов, проводившиеся в течение ряда лет в Институте химии силикатов им. И. В. Гребенщикова АН СССР. Эти исследования, естественно, не могли не испытать сильного влияния принципов и идей кристаллохимии силикатов, развитых Н. В. Беловым. Ряд методических приемов расшифровки кристаллических структур, таких как использование кратных пиков при интерпретации функции Паттерсона, применение симметричных цепочек в прямых методах и др., разработанных школой Н. В. Белова, также использовались в этих работах. [c.107]

    Таким образом, рентгеноструктурный анализ — единственный из методов, одновременно определяющих первичную, вторичную и третичную структуру белка. Мы рассмотрим в самых общих чертах принципы рентгеноструктурного анализа белков. При [c.89]

    Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения н очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сейджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или липидную части и выполняющих очень ответственные функции в организме. [c.53]

    Уже в ранних исследованиях. макромолекулярной организации однотяжевых РНК было установлено, что в физиологических условиях они характеризуются компактной и упорядоченной третичной структурой, которая возникает за счет взаимодействия шпилькообразных элементов их вторичной структуры. Транспортные РНК — единственные представители природных полирибонуклеотидов, которые удалось закристаллизовать и изучить методом рентгеноструктурного анализа с достаточно высоки.м разрешением. Поэто.му представления о принципах организации третичной структуры РНК [c.40]

    К настоящему времени субъединичная структура обнаружена у нескольких сотен белков. Однако только для немногих белков, в том числе для молекулы гемоглобина, методом рентгеноструктурного анализа расшифрована четвертичная структура . Основными силами, стабилизирующими четвертичную структуру, являются нековалентные связи между контактными площадками протомеров, которые взаимодействуют друг с другом по типу комплементарности—универсальному принципу, свойственному живой природе. Структура белка после его синтеза в рибосоме может частично подвергаться модификации (посттрансляционный процессгшг) например, при превращении предшественников ряда ферментов или гормонов (инсулин). [c.71]

    Конформация полипептида в растворе частично определяется прямым взаимодействием пептидных групп друг с другом. То обстоятельство, что синтетические по-липептидй имеют высокорегулярную, кристаллическую структуру, тогда как многие другие- полимеры аморфны, т. е. обладают структурой беспорядочного клубка, в принципе свидетельствует о наличии некой естественной конформации для полипептидов. Результаты тщательной оценки длины связей и валентных углов, основанной на размерах, установленных для планарных пептидных связей в кристаллах небольших пептидов, существенно ограничили число возможных моделей конформации полипептидов. Дальнейшие ограничения в выборе возможной конформации были связаны с тем, что, согласно исходным предположениям, каждая карбонильная и каждая амидная группа пептида участвует в образовании водородной связи и что конформация полипептида должна соответствовать минимальной энергии вращения вокруг одинарной связи. Этим требованиям для пептидов, в которых имеются внутримолекулярные связи, отвечала правая спираль, содержащая 3,6 аминокислотных остатка на один виток (так называемая а-спираль) [1].. Существование спиральных структур предсказанных размеров в синтетических полипептидах было подтверждено с помощью самых различных физических методов, в том числе и методом рентгеноструктурного анализа. Такая а-спираль, в которой каждая пептидная группа соединена водородной связью с третьей от нее пептидной группой, считается наиболее вероятной моделью отдельных участков остова молекулы глобулярных белков, к которым относятся и ферменты. Нужно подчеркнуть, однако, что конформация глобулярного белка в целом отличается от простой регулярной а-спиральной структуры из-за наличия, в белке дисульфидных связей и остатков пролина, которые нарушают спиральное строение и изменяют ориентацию цепи, а также из-за взаимодействия боковых цепей, ответственного за третичную структуру. Действительно, рентгеноструктурный анализ с высоким разре- [c.25]

    Важную группу полисахаридов составляют гликозаминогликаны, к которым относятся гиалуроновая кислота, хондроитинсульфаты и кератансульфат. Было показано, что в ориентированных пленках молекулы этих соединений в зависимости от типа присутствующих катионов могут принимать целый ряд взаимо-превращаемых конформаций [12]. Эти конформации представляют собой группу левых спиралей, упакованных антипараллельно и отличающихся в основном степенью растянутости. Наиболее сжатой является одна из конформаций гиалуроновой кислоты, в которой одна молекула закручена вокруг другой с образованием двойной спирали [13] во всех остальных случаях молекулы упакованы бок о бок . В некоторых случаях удалось детально выяснить строение молекул, что для волокнистых веществ, в отличие от кристаллических, очень трудно сделать удалось даже выявить положение молекул воды и геометрию участков молекул, координированных вокруг катионов [14]. Важными вехами на пути понимания конформационных принципов строения полисахаридных цепей стали а) первый пример установления с помощью, рентгеноструктурного анализа упорядоченной конформации разветвленного полисахарида (внеклеточного полисахарида Е. oli) это позволило предположить, что наличие ветвлений играет важную роль при ориентации боковых цепей антипараллельно основной цепи и стабилизации таким образом конформации молекул полисахарида посредством нековалентных взаимодействий [15] б) первое изучение этим же методом структуры кристаллического гликопротеина, которое показало упорядоченность конформации его углеводной части [16]. Ко времени опубликования работы [16] определение строения (F -фрагмента иммуноглобулина G) не было доведено до конца, однако уже можно было сделать ряд важных выводов, которые будут рассмотрены ниже. [c.283]

    Не могли быть использованы для глобулярных белков методы рентгеноструктурного анализа фибриллярных белков. Рентгенограммы последних вследствие неполной упорядоченности и нестрогой регулярности волокон содержат небольшое число рефлексов (5-50), которые к тому же, как правило, диффузны. Они получаются за счет дифракции рентгеновских лучей на регулярных участках волокон. На основе столь бедной рентгенограммы нельзя даже в принципе вьшолнить полное и независимое определение на атомном уровне структуры фибриллярного белка. Иными словами, число неизвестных (координаты атомов) в этой задаче намного превышает число уравнений, которые могут быть составлены для их определения на основе известных экспериментальных данных (положений и интенсивностей рефлексов). Волокнистая структура и нерастворимость таких белков делают практически невозможной их кристаллизацию с хорошей трехмерной упорядоченностью. Поэтому с помощью анализа рентгенограмм фибриллярных белков можно преследовать лишь ограниченную цель идентификации типа регулярных структур пептидного скелета и возможного способа его аранжировки. Сначала создается ориентировочная модель, причем только регулярной части белка, рассчитьшается картина рентгеновской дифракции этой модели, которая затем сопоставляется с наблюдаемой рентгенограммой. Путем изменения модели добиваются наиболее полного совпадения теоретической и экспериментальной дифракционных картин. Но и такая задача далеко не всегда решается однозначно. Поэтому при рентгеноструктурном анализе фибриллярных белков большое значение имеют дополнительные данные о структуре, полученные иным образом, с помощью привлечения спектральных методов, структурных параметров родственных молекул, информации о плотности, механических свойствах и т.д. Расчет дифракционной картины, соответствующей предполагаемому спиральному строению фибриллярного белка, выполняется на основе теории интерференции рентгеновских лучей спиральными структурами, разработанной Кокраном и Криком [77]. Обзор методов рентгеноструктурного исследования фибриллярных белков содержится в работе К. Холмса и Д. Блоу [174]. [c.42]

    При подготовке монографии я стремился, во-первых, рассматривать общие принципы и понятияэнзимологии на конкретных примерах (однако, чтобы не перегружать теоретические разделы, посвященные кинетике, основная часть иллюстративного материала изложена в отдельной главе) и, во-вторых, ограничиваться только такими примерами, для которых имеются неоспоримые, проверенные доказательства, не приводя данных, допускающих различные толкования. Поэтому обсуждаются механизмы действия только тех ферментов, третичная структура которых точно установлена методом рентгеноструктурного анализа. Аналогичным образом, теоретические аспекты действия аллостерических белков рассматриваются главным образом на [c.9]

    Алгоритм расстояний является одним из наиболее эффективных. Он основан на том, что полная структура молекул описывается согласно данным о межатомных расстояниях. Возможная степень неоднозначности, связанная с вращениями и, как следствие, с изменениями диэдральных углов, задается в таких системах указанием максимальных и минимальных расстояний. Так как ЯЭО позволяет определять максимальные межатомные расстояния, то в этом методе можно использовать данные, полученные с помощью ЯМР. В ряде случаев метод расстояний оказывается достаточно эффективным. Возможность проверки правильности выбранной структуры состоит в том, чтобы исходя из данных рентгеноструктурного анализа рассчитать данные по ЯЭО. С этой целью прежде всего необходимо определить расстояния, которые соот-ветствуютожидасмымиз данныхпоЯЭО. Из результатов рентгеноструктурного анализа можно выбрать все пары протонов, которые находется на более близких расстояниях, чем те максимальные расстояния, которые можно в принципе определить из данных по ЯЭО. Для того чтобы максимально приблизить оценки к реальным условиям, необходимо провести дополнительное разделение ожидаемых значений интенсивности по классам и определить, например, сильный, средний и слабый ЯЭО для расстояний менее 0,25 нм, от 0,25 до 0,3 нм и от 0,3 до 0,4 нм соответственно. Для того чтобы надежно смоделировать структуру, необходимо располагать достаточным числом экспериментальных данных. В противном случае, если из эксперимента получены не все данные по ЯЭО, то провести полный расчет не удается. [c.141]

    Основываясь на величинах констант спин-спинового взаимодействия / и разумных предположениях о конформационной предпочтительности (гл. 9), можно в принципе различить дисиндиотактические и диизотактические конфигурации. Однако а priori нельзя отличить эрыгро-диизотактические конфигурации от грео-диизо-тактических, а именно эта информация является особенно важной при определении направления присоединения к двойной связи (см. гл. 8). Поэтому при изучении этих полимеров методом ЯМР опираются на данные ИК-спектроскопии и (особенно) рентгеноструктурного анализа метод ЯМР дает ряд количественных результатов, которые нельзя получить с помощью других методов. [c.115]

    Рентгеноструктурный анализ кристаллических полимеров в принципе может давать сведения о координатах атомов в элементарной ячейке, однако, ввиду не очень совершенного порядка число отражений мало и прямые решения структурной задачи невозможны [19]. Рентгенограммы растянутого образца дают информацию о периоде идентичности (с) вдоль оси волокон. Чтобы получить другие параме.тры спирали — трансляцию вдоль оси при переходе от одной эквивалентной мономерной к следующей (с1) и угол поворота в плоскости, перпендикулярной оси спирали (0 = 2ят/тг), обычно действуют методом проб и ошибок, т. е. делают некоторые предположения относительно симметрии спирали, или (что то же) относительно числа мономерных звеньев в витке. Например, предполагаю , чго спираль имеет симметрию 3[ (т. с. 3 мо номерных единицы в одном витке — п/т = 3), 4ь 7г и т. д. Некоторые типы симметрии спиралей приведены на рис. 2. Далее для выбранного типа симметрии рассчитывают теоретическое распределение интенсивности и сравнивают его с наблюдаемым. Теория рассеяния рентгеновских лучей на спиралях была разработана Кокреном, Криком и Вандом [20] в связи с интерпретацией рентгенограмм спиральных полипептидов и в дальнейшем использовалась для предсказания структуры ДНК, регулярных полимеров и т. д. (см. также [19]). [c.10]

    Теория этих методов и их экспериментальное оформление достаточно сложны. В книге, которую вы держите в руках, дано элементарное изложение основных принципов молекулярной спектроскопии и рентгеноструктурного анализа. Оно поможет вам получить некоторое представление о сути физи-1 ческих процессов, лежащих в основе перечисленных выше методов, и о возможности их применения к рещеншю практик неских задач,. [c.4]

    Используя метод двойного резонанса (т. е. избирательного насыщения некоторых линий), удалось разрешить в спектре восстановленного цитохрома с 8 сигналов, соответствующих отдельным сигналам в спектре окисленного цитохрома с. Поэтому можно, используя эти сигналы, выяснить, каково возмущающее влияние окисления железа на его парамагнитное состояние. В совокупности с данными о положении этих сигналов в спектре ЯМР восстановленного белка это может существенно помочь в интерпретации спектра. Дальнейший шаг состоял в определении времен релаксации разрешенных резонансных сигналов в спектре окисленнЬго цитохрома с, что в принципе позволяет оценить расстояния между парамагнитным атомом железа и резонирующими ядрами, как описано выше в этой главе. Таким путем были получены дополнительные, а иногда и основные данные, необходимые для отнесения сигналов, а оценки расстояний оказались в хорошем соответствии с данными рентгеноструктурного анализа [28]. [c.399]

    За исключением этих различий, методы дифракции нейтронов и рентгеновских лучей похожи друг на друга, и нет необходимости вновь излагать общие принципы, которые уже обсуждались в главах, посвященных дифракции рентгеновских лучей. Поэтому можно сразу рассмотреть несколько примеров использования дифракции нейтронов для рещения структурных задач. Следует учесть, что вследствие малой распространенности источников нейтронов дифракцией нейтронов занимается сравнительно немного исследователей по сравнению с очень больщим числом специалистов по рентгеноструктурному анализу. Поэтому исследуемые проблемы следует выбирать очень тщательно. Никто не станет использовать дифракцию нейтронов для определения, например, структуры нитрата калия, так как это можно сделать гораздо проще и не менее точно с помощью дифракции рентгеновских лучей. Только в том случае, когда структура имеет какие-то аспекты, которые трудно изучить с помощью дифракции рентгеновских лучей, целесообразно заняться нелегкой работой по измерению интенсивности рассеянных нейтронов. Поэтому больщин-ство исследований методом дифракции нейтронов связано с определением положений атомов водорода. [c.201]

    Если для индицирования рентгенограммы был использован метод гомологии, то это обычно позволяет получить грубую модель структуры или субструктуры. Ниже нами будут рассмотрены некоторые вопросы, связанные с исиользоваиием принципа гомологии в рентгеноструктурном анализе. [c.157]

    Для полуколичественной характеристики третичной структуры и ее изменений могут быть использованы гидродинамические константы белка — характеристическая вязкость [i ll, константа седиментации S и константа диффузии D, — двойное лучепреломление и некоторые другие показатели. Однако точное знание третичной структуры может быть достигнуто только с помощью рентгеноструктурного анализа. Этот метод широко использовался для изучения расположения атомов в кристаллах простых неорганических и органических соединений и может быть применен только к кристаллическому материалу или материалу, обладающему определенной регулярностью в структуре. Конечной целью анализа дифракции рентгеновых лучей является определение координат всех атомов. Знание этих координат позволяет построить трехмерную, пространственную модель молекулы, в которой в определенном порядке расположены все составляющие ее атомы. Детальное обсуждение принципов рентгеноструктурного анализа не вхо- [c.117]

    В данной главе мы ставили целью показать прежде всего специфику определения параметров комплексов в условиях их диссоциации на компоненты, т. е. в растворах и газовой фазе. Мы рассмотрели эти вопросы на примере тех методов, которые дают наиболее ценную информацию о природе донорно-акцепторного взаимодействия. Методы, связанные с проведением эксперимента в твердой фазе, не рассматривались, так как исследование выделенных в твердом состоянии комплексов в принципе ничем не отличается от исследования других индивидуальных соединений. К таким методам, в частности, относятся метод ядерного квадрупольного резонанса [286— 296], гамма-резонансная спектроскопия (эффект Мёссбауэра )[297— 307], рентгеноструктурный анализ (см. гл. III.3). Важные сведения [c.86]

    Явление нестехиометричности может быть изучено при помощи различных экспериментальных приемов. Если один компонент бинарной системы летуч, как в окислах или нитридг х, то необходимо изучить равновесие давление—состав. На основании хода изотермы давление—состав, применяя правило фаз, можно определить, содержит ли данная область составов одну или большее количество фаз. Применение этого метода в принципе имеет практические трудности, так как очень незначительное количество реальных систем обладает свойствами действительного термодинамического равновесия и обратимости. Иногда проводят электрические и магнитные измерения. Однако самым широко распространенным методом исследования нестехиометрических систем является рентгеноструктурный анализ. На рентгенограммах обычно можно определить число присутствуюпщх твердых фаз и составить схему области гетерогенности и гомогенности систем с переменным составом. Появление нестехиометрических фаз может быть обнаружено с большой точностью. [c.158]

    Первое направление является логическим развитием и, даже можно сказать, завершением основного органохимического направления исследований белковых веществ, а исследования конфигурации белковых веществ начались в результате применения метода дифракции рентгеновских лучей для исследования структуры белков, аминокислот и пептидов. Первоначально, в 30-х годах в обоих этих направлениях преследовалась общая цель — выяснить основные принципы строения белковых веществ. Но по мере того, как начинает выясняться важная роль пространственной организации белковой частицы для проявления ее основных функций, рентгеноструктурный анализ постепенно занимает центральное положение среди мето ов, которые могут дать полную информацию не только о последовательности аминокислот в цепи, но в первую очередь о пространственной конфигурации (третичная структура) образующихся сложных соединений. [c.138]

    Новые успехи применения рентгеноструктурного анализа в расшифровке строения глобулярных белков были неразрывно связаны с его дальнейшим методическим усавершенствованием. Рентгеноструктурный анализ глобулярных белков двинулся вперед семимильными шагами после того, как в 1953 г. Перутц разработал принципы получения таких производных гемоглобина, которые содержали тяжелые атомы и которые кристаллизовались изоморфно с исходным белком, но заметно различались по дифракционным картинам своих кристаллов [354]. Этот прием позволил разработать и усовершенствовать так называемый метод изоморфного замещения, который дал исследователям принципиальную возможность однозначно определять белковые структуры. В продолжение 1953—1960 гг. метод был использован для изучения многих кристаллических белков, главным образом гемоглобина, миоглобина, инсулина, рибонуклеазы и лизоцима. Наиболее трудным было получение кристаллов соответствующих изоморфных производных белков, содержащих тяжелые атомы-заместители. [c.149]


Смотреть страницы где упоминается термин Принципы методов рентгеноструктурного анализа: [c.138]    [c.93]    [c.96]    [c.136]    [c.152]    [c.40]    [c.136]   
Смотреть главы в:

Кристаллография рентгенография и электронная микроскопия -> Принципы методов рентгеноструктурного анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ рентгеноструктурный

Метод принцип

Метод рентгеноструктурного анализа



© 2025 chem21.info Реклама на сайте