Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биореакторы среды

    Культивирование микроорганизмов при непрерывном добавлении в биореактор среды и выведении такого же объема суспензии. [c.554]

    Биореактор. Аппараты для проведения процессов культивирования микроорганизмов — биореакторы — можно рассматривать как технические системы, предназначенные для преобразования необходимых материальных и энергетических потоков в процессе роста и размножения клеток. Биохимические реакторы представляют собой основное технологическое оборудование, элементы схемы производства в целом, а эффективность их функционирования определяет в основном технико-экономические показатели биотехнологической системы. Многообразие форм конструктивного оформления биореакторов определяется технологическими и микробиологическими требованиями осуществляемого процесса ферментации. Так, схема на рис. 1.4 иллюстрирует различные процессы микробиологического синтеза, осуществляемые в промышленных биореакторах, а также основные условия их проведения. В биореакторе необходимо поддержание заданной температуры культивирования 1, давления Р, pH среды, окислительно-восстановительного потенциала еН, уровня растворенного кислорода Со времени ферментации т и концентрации лимитирующего субстрата 5. Для обеспечения заданных физико-химических параметров протекания процесса в биореакторе должны быть выдержаны необходимые условия тепло- и массообмена, аэрации среды и режима гидродинамического перемешивания. Рассмотренные на схеме процессы осуществляются в результате глубинного культивирования микроорганизмов в условиях аэрации и перемешивания среды. Известны также биореакторы для осуществления процесса путем поверхностного культивирования клеток с использованием микробиологических пленок и флокул, а также биореакторы для процессов с иммобилизованными на носителях ферментами [22]. [c.12]


    Между отдельными элементами БТС имеется функциональная взаимосвязь. Элементы взаимодействуют между собой и с окружающей средой в виде материального, энергетического и информационного обмена. На уровне элементов БТС реализуются типовые процессы преобразования вещества и энергии, например, механические в смесителях, биохимические в биореакторах, тепловые в теплообменниках, стерилизаторах и т. д. В соответствии со стратегией системного анализа на уровне отдельных элементов схемы ставится задача получения функционального оператора или модуля, представляющего собой математическую модель типового технологического процесса. В зависимости от функциональной сложности технологического элемента для его описания могут быть использованы один или несколько типовых операторов, приведенных на рис. 1.9. [c.18]

    Условия функционирования узла следующие. В биореактор поступают потоки питательной среды /.], нейтрализующего агента 2 и культуральной жидкости L (после сепарационного разделения последний содержит определенное количество клеток микроорганизмов). В отводимом из сепаратора потоке Ц находятся концентрированная биомасса микроорганизмов и некоторое количество неутилизированной питательной среды (субстрата). Поток суспензии микроорганизмов из биореактора в сепаратор обозначим з. Биореактор имеет систему охлаждения II, обеспечивающую поддержание заданной температуры процесса ферментации в условиях выделения тепла при реакции биосинтеза. Суспензия микроорганизмов при сепарации дополнительно подогревается. Биореактор представлен в виде трех операторов — I — смешение , II — теплообмен , III — биохимический синтез , а сепаратор в виде двух операторов — IV — теплообмен и V — разделение . [c.19]

    Согласно развиваемому системному подходу к анализу сложной совокупности процессов на микро- и макроуровнях, к эффектам, определяющим поведение системы на макроуровне, относится массопередача. Массообменные процессы в биореакторе непосредственно влияют на рост микроорганизмов, определяя скорость транспорта питательных веществ к клеткам и отвод продуктов метаболизма в среду в количестве, соответствующем стехиометрическим коэффициентам. Наибольший практический интерес, с точки зрения ограничения скорости процесса ферментации, представляют такие элементы питания, как кислород и углеродсодержащий субстрат, учитывая большую удельную потребность в них клеток, низкую растворимость в культуральной жидкости и присутствие в ферментационной среде в виде дисперсных фаз. [c.87]


    Эффективен для оценки массообмена в биореакторах на ферментационных средах с микроорганизмами. Необходим малоинерционный датчик измерения растворенного кислорода [c.93]

    Биореакторы с механическим перемешиванием среды [c.137]

    Модели биореакторов с учетом частичной сегрегации среды. [c.149]

    Более полно временную или пространственную неоднородность перемешивания среды в биореакторе описывают модели промежуточного уровня смешения или частичной сегрегации. Разработано два основных подхода к моделированию состояния частичной сегрегации. [c.149]

    Первый подход основан на том, что элементы среды, находящиеся в аппарате малое время, не успевают перемешиваться на микроуровне. Центральным понятием модели является величина критического возраста а. Сочетание зон микросмешения и сегрегации может быть параллельным или последовательным. Если а 0, то зона сегрегации отсутствует и все элементы в биореакторе перемешаны на микроуровне, а при а ->оо — система соответствует условиям полной сегрегации. Применение алгоритма для расчета по этой модели требует знания функционального состоя- [c.149]

    Рассмотрим далее некоторые теоретические и экспериментальные данные по моделированию процесса ферментации в биореакторе с учетом промежуточного состояния смешения, т. е. частичной сегрегации среды. Будем считать, что поток, проходящий биореактор, находится последовательно или в зоне, соответствующей идеальному перемешиванию среды, при этом по уровню смешения он может быть либо в сегрегированном состоянии, либо в состоянии максимальной смешанности. Физическую картину, соответствующую данной модели, можно представить исходя из экспериментальных данных по оценке вязкости дрожжевой суспензии в биореакторе при различных скоростях сдвига (рис. 3.19). [c.150]

    Рассмотрим далее вариант модели частичной сегрегации, учитывающей рост биомассы микроорганизмов и утилизацию субстрата согласно кинетической модели (3.152) [20]. Представим биореактор, состоящий из двух зон с различным уровнем смешения среды. Для случая последовательного соединения зон сегрегация—микросмешение уравнения модели получат вид [c.151]

    Если в биореакторе имеются две зоны, отвечающие уровню микросмещения среды, то уравнения модели примут вид [c.152]

    Секционированные колонные биореакторы. Применение секционированных по высоте колонных биореакторов для процессов биотехнологии связано с целым рядом преимуществ этих аппаратов возможностью организации заданной структуры газожидкостных потоков возможностью осуществления многостадийного процесса культивирования микроорганизмов высокой интенсивностью перемешивания среды п транспорта кислорода к клеткам. Известно [c.160]

    При организации в колонных биореакторах внешних контуров теплообмена ячеечная модель дополняется соотношениями, учитывающими наличие циркуляционного потока. Схема модели, соответствующая этому варианту организации процесса, приведена на рис. 3.27. Согласно схеме возможна организация циркуляции среды субстрата в колонном биореакторе с заданным распределением по секциям. Это позволяет решить задачу управления условиями роста клеток в объеме каждой секции. Система уравнений модели для 1-й ячейки имеет вид [c.163]

    Эффективность работы БТС, включающей большое число разнообразных технологических элементов — аппаратов, определяется не только качеством их функционирования, но и надежностью. Данный вопрос стоит особенно остро для биохимических производств, где выход из строя основных или вспомогательных технологических элементов (при отсутствии резерва) может привести к продолжительной остановке всего производства. Многочисленные примеры данного положения следуют непосредственно из практики. Так, выход из строя только насоса подачи титрующего агента в биореактор приводит к следующей ситуации (без вмешательства операторов или подключения резервного насоса) в аппарате под воздействием биохимической активности микроорганизмов происходит отклонение рН-среды от оптимальных для жизнедеятельности клеток значений, рост и развитие микроорганизмов замедляется, происходит вымывание клеток из аппарата (так как О > ц), концентрация их резко уменьшается, а субстрата возрастает до исходной величины. Через определенный промежуток времени в биореакторе уже не обеспечивается получение целевого [c.165]

    Определенные требования на выбор варианта аппаратурного оформления процесса культивирования микроорганизмов накладывает величина объема выпуска продукции. При создании крупно-тоннажных биореакторов большого объема (до 1000 м и более) могут оказаться неприемлемыми технические решения, эффективные для небольших по объему аппаратов. Так, трудности в разработке мощных приводов для механических перемешивающих устройств обусловливают переход к промышленным биореакторам с распределенным вводом энергии с использованием нескольких приводов, что в свою очередь затрудняет решение вопросов стерильности, механической надежности и т. д. Характерной особенностью конструкций биореакторов является выбранный принцип перемешивания среды, определяющий способ ввода энергии, а в ряде случаев и эффективность массообменных процессов в аппарате. [c.196]


    При внесении Н2О2 в подаваемую в биореактор среду культивирования с фенолом (концентрация фенола 1,8 г/л, pH 7,0) в режиме хемостата бактериальный ценоз, адаптированный к Н2О2, выдерживал присутствие перекиси водорода в концентрации до 3 г/л при производительности по окисленному фенолу до 0,22 г/(л.ч) (рис. 4). [c.233]

    Совместно с Л.С.Гордеевым и А.Ю.Винаровым сформулированы научные принципы анализа, оптимизации, масштабирования и проектирования биотехнологических процессов. С позиций системного подхода последовательно проведен анализ эффектов и явлений, происходящих в биохимическом реакторе на микро- и макроуровне. Разработаны математические модели, учитывающие кинетику роста микробных популяций, транспорт питательного субстрата к клеткам и гидродинамическую обстановку в реакторе, характеризуемую эффектами се1регации ферментациогшой среды и неидеальностью структуры потоков в реакторе большого объема. Предложена методика решения задачи масштабного перехода от лабораторных установок к промышленным биореакторам на основе вычислительных экспериментов. Показаны направления оптимизащш конструктивных и режимных параметров биотехнологических процессов. [c.13]

    Среди применений искусственных нейронных сетей хочется особенно отметить их эффективное использование для описания статики и динамики трудно формализуемых математически процессов. Примером являются процессы, протекающие в биореакторах. Росг биомассы в таких процессах зависит от множества факторов и, как следствие этого, кинетические модели являются плохо устанавливаемыми. С целью преодоления указанных обстоятельств в [2] применили гибридную нейронную сеть для описания процесса ферментации в биореакторе. Собственно нейронная сеть моделировала скорость роста популяции, которая непосредственно не может быть измерена. Поэтому модель биореактора дополнялась уравнениями сохранения, позволившими замкнуть описание процесса и выразить измеряемые выходные переменные (концентрации биомассы и субстрата). Таким образом, стало возможным применение алгоритам обратного распространения для обучения нейронной сети. Оценочная функция Е представляла собой средневзвешенное квадратичное отклонение измеряемых и даваемых гибридной сетью выходных переменных безразмерной концентрации субстрата 8 и безрезмерной концентрации биомассы X  [c.76]

    На рис. 3 представлены результаты культивирования в хемостатных условиях консорциумов, неадаптарованных к перекиси водорода, и без внесения Н2О2. В этих условиях при скорости разбавления 0,04 ч и входной концентрации фенола в среде культивирования до 3 г/л скорость его окисления не превышала 0,13 г/л.ч. Остаточная концентрация фенола в среде на выходе из биореактора находилась на уровне 0,1-0,2 г/л. [c.233]

    Результаты культивирования в условиях хемостата показали, что биоценозы могут "работать" при непрерывной подаче Н2О2 в биореактор при содержании перекиси во входной среде до 3 г/л. В то же время, достигнутые показатели скорости окисления фенола и производительности биореактора не очень значительно отличались от таковых для контрольных вариантов на основе обычных консорциумов микроорганизмов-фенолдеструкторов и без использования дополнительного химического окисления. [c.235]

    Один из методов повышения производительности биореакторов в технологии биосинтеза связан с так называемым "высокоплотностным культивированием" микроорганизмов, которое реализуется при проведении процесса по специальной программе с подпиткой субстратом в периодическом режиме культивирования [24]. Это повышает концентрацию клеток микроорганизмов в среде культивирования и при поддержании неизменной удельной скорости биосинтеза общую производительность биореактора. Однако такой процесс требует тщательного выдерживания необходимых параметров биосинтеза (прежде всего текущей концентрации органического субстрата и концентрации растворенного кислорода, а также pH и содержания минеральных компонентов питания). Кроме того, питательные субстраты должны подаваться в биореактор в концентрированном виде. Процесс с подпиткой был бы одним из наилучших решений при биологическом обезвреживании концентрированных токсичных стоков и отходов, поскольку он может привести не только к увеличению производительности биореактора, но и к уменьшению объема вторичных стоков и отходов со стадии биологической очистки, Однако применительно к переработке токсичных соединений возможности тфоцесса с подпиткой резко ограничиваются из-за образования побочных продуктов метаболизма, ингибирующих процесс окисления. Так, в наших экспериментах в обычными консорциумами фенолдеструкторов ингибирование окисления в режиме с [c.235]

    В течение всего опыта в биореактор вносили фенол порциями по 0,5-5,0 г/л. Процесс окисления осуществляли при не очень интенсивном перемешивании среды в биореакторе, так что потребление фенола можно было легко определить по падению текущей концентрации растеоренного кислорода в ферментационной среде, а возрастание р02 свидетельствовало об исчерпании фенола и необходимости внесения его новых порций. Одновременно в первые от начала опыта 1000 ч вносили Н2О2 в виде 50%-го [c.236]

    Стадия подготовки засевной биомассы I обеспечивает подачу в производственные биореакторы необходимого количества посевного материала — активной культуры микроорганизмов, выращенной в периодически или непрерывно работающих инокуляторах. На стадии подготовки минеральной питательной среды а осуществляется растворение минеральных солей, фильтрация растворов и доведение концентраций элементов в них до заданных соотношений. В качестве минеральных источников питания используют сернокислые соли калия, магния, железа, аммофос, сульфат аммония, а также микроэлементы — соли марганца, цинка, железа и меди. Подготовка углеводородного субстрата (стадия III) включает процессы подогрева, перемешивания жидких парафинов и их дозированной подачи в производственные биореакторы. [c.14]

    Проведенные расчеты показателей непрерывного процесса выращивания биомассы микроорганизмов показали, что достигаемая концентрация дрожжей при условии микросмешения среды в сравнении с условиями сегрегации составляет Хт Хв = Л при 0 = = ц=у/К = 0,25 ч- и Хт1Хв=, 2А при D = i = y/У = 0,10 ч- . Для практических расчетов биореакторов могут быть использованы математические модели, характеризующие некоторый промежуточный уровень смешения среды. [c.78]

    Необходимо также отметпть особенность моделирования процессов в биореакторах, связанную с конструктивным разнообразием их аппаратурного оформления. Так, в гл. 4 рассмотрены основные типы биореакторов и дана их классификация, наглядно свидетельствующая о существовании нескольких десятков конструктивных схем аппаратов, различающихся по принципу ввода энергии, способу аэрации среды, методам организации движения потоков. На формирование математической модели биореактора влияют также режим работы (периодический, полупериодический, непрерывный) и масштаб аппарата. Именно при переходе от лабораторных установок к полупромышленным и промышленным в наибольшей степени проявляется влияние макрофакторов на кинетические закономерности процесса ферментации. [c.137]

    При проведении процессов культивирования микроорганизмов в биореакторах с интенсивной аэрацией и перемешиванием среды, обеспечивающих высокую скорость сорбции кислорода, концентрация его в культуральной жидкости может превышать критическую для данной культуры ( i,> Скрит). В ЭТИХ УСЛОВИЯХ удельная скорость роста микроорганизмов не будет зависеть от концентрации кислорода в среде, и кинетика роста определится соотношением р,= л(5). Используя в качестве кинетического соотношения модель Моно—Иерусалимского, получим следующую систему уравнений  [c.141]

    Для ироцессов ферментации на малорастворимых субстратах (н-иарафины, дистилляты нефти) размер дисперсных капель к зависит от интенсивности перемешивания среды по зонам биореактора [12]. Для оценки среднего устойчивого диаметра капель можно, например, использовать данные работы [21] [c.146]

    Качественно новым этапом описания процессов, протекающих в ферментационной среде бнореактора, явилось развитие представлений о существовании в аппарате отдельных зон, характеризующихся различным уровнем смешения. В основу моделирования возможных ситуаций в бпореакторе положены модели микросмещения и сегрегации. С физико-химической точки зрения ферментационная среда представляет собой многофазную систему, качественно описываемую двухуровневой иерархической схемой, где на нижнем уровне находятся отдельные составляющие среды — клетки, диспергированные капельки субстрата, а на верхнем— крупномасштабные скопления в виде клеточных агломератов, глобул из клеток, субстрата и пузырьков газа. Размер и количество этих скоплений зависит от степени турбулизацин среды. При этом ферментационную среду, соответствующую смешению уровня агрегатов, можно рассматривать как сегрегированную систему, поведение которой соответствует множеству реакторов периодического действия, в которых происходит рост и развитие микроорганизмов в течение времени ферментации. Размер клеточных агломератов и глобул зависит как от сил, сцепленных между элементами их составляющими, так и от интенсивности перемешивания в биореакторе, количественной характеристикой которой может служить величина диссипации энергии в данной области аппарата и связанная с ней величина внутреннего масштаба турбулентных пульсаций [c.147]

    Двум крайним состояниям популяции микроорганизмов в перемешиваемом биореакторе (одиночные клетки и клетки в виде агломератов) можно поставить в соответствие два уровня смешения — микросмешение и сегрегацию. Для бнореактора с произвольной функцией распределения времени пребывания (РВП) уравнение для текущей концентрации микроорганизмов в условиях микросме-шения среды имеет вид [c.147]

    Таким образом, рассмотренные математические модели позволяют учитывать условия неремешивання среды в биореакторе, связанные со структурой потоков и уровнем смешения. [c.156]

    Можно выделить три основных принципа микро- и макросмещения ферментационной среды, используемых в промышленных биореакторах  [c.196]

    Широко распространен класс биореакторов с пневматическим перемешиванием среды. Так, в аппарате Лефрансуа—Марийе объемом 320 м , разработанном во Франции в 1960 г., перемешивание и аэрация среды обеспечиваются за счет направленной подачи аэрирующего газа (воздуха) в нижнюю часть аппарата. Концен-трично аэрационной трубе расположен центральный диффузор. Питательная среда по трубе поступает в зону распределения воздушного потока, где смешивается с массой жидкости, поднимающейся вверх через диффузор с газовыми пузырями. Интенсивность газожидкостного взаимодействия данного аппарата невелика. Расчетная величина скорости сорбции кислорода не превышает 1,0—1,3 кг Ог/м ч. Однако к преимуществу аппарата следует отнести простоту и надежность конструкции, малые эксплуатационные расходы. [c.198]

    В этом отношении более эффективными являются биореакторы с механическим перемешиванием среды. Разработано большое число конструкций аппаратов с механическими мешалками различного типа. Аэрация среды в аппарате обеспечивается за счет нагнетания воздуха и его диспергирования мешалкой. Для организации лучшей циркуляции среды мешалку размещают в диффузоре. Объем апиарата с одним перемешивающим устройством определяется мощностью привода и условиями равномерного рас-нределения диссипируемой энергии и достигает до 300 м , а скорость сорбции кислорода до 10—12 кг 02/(мЗ- ч) [12]. [c.202]

    Хорошо известны бнореакторы с механическим перемешивающим устройством типа ультрамикс и мультистаг , разрабатываемые фирмой Хеман . Применение многоступенчатой мешалки и перфорированного центрального диффузора в аппарате создает хорошие условия для равномерного диспергирования подаваемого газа во всем биореакторе. Высокая удельная энергия на перемешивание (6—8 кВт/м ) обеспечивает интенсивную турбулизацию среды и массопередачу кислорода в системе газ—жидкость— клетка. Производительность такого аппарата объемом 300 м прн выращивании дрожжей на углеводородном субстрате составит до 15—20 т биомассы в сутки. [c.202]

    Гидродинамическая структура жидкостного потока в колонном биореакторе может соответствовать идеальному перемешиванию при наличии контура циркуляции, или приближаться к идеальному вытеснению при прямоточном взаимодействии барботируемого газа и питательной среды, что позволяет применять эти аппараты для широкого класса процессов культивирования аэробных микроорганизмов [20]. Необходимая величина скорости сорбции кислорода, с учетом потребления кислорода микроорганизмами, достигается в основном расходом газовой фазы и относительной скоростью движения газового и жидкостного потоков. В работах [5, 12, 20] рассмотрены примеры использования секционированных колонных бнореакторов в процессах микробиологического синтеза. В многоступенчатом колонном биореакторе, состоящем из секций, разделенных перфорированными тарелками, подача субстрата осуществляется на нижнюю тарелку, а вывод суспензии микроорганизмов — сверху. Дополнительно к турбулизацин жидкости барботируемым газом в ряде аппаратов применяется механическое пере.мешнванпе за счет лопастных мешалок, находящихся в каждой секции колонны и помещенных на центральной оси. Движение жидкости и газа в ферментере обычно противоточное. За счет дополнительного механического перемешивания каждая секция колонны работает как ячейка полного смешения. [c.206]

    Эффективным путем интенсификации массообменных процессов в колонных биореакторах за счет дополнительной турбулиза-ции среды и выравнивания профиля концентраций по сечению колонны является способ проведения процесса ферментации в присутствии плавающей насадки. Проведены экспериментальные и теоретические исследования работы колонного биореактора с плавающей насадкой, показавшие его высокую эффективность при проведении различных процессов микробиологического синтеза, в том числе при выращивании кормовых дрожжей на гидролизном и углеводородном субстрате, при культивировании мицелиальных культур, получении бактериальной биомассы и др. [c.207]


Смотреть страницы где упоминается термин Биореакторы среды: [c.132]    [c.237]    [c.12]    [c.19]    [c.26]    [c.26]    [c.50]    [c.153]    [c.155]    [c.195]    [c.196]    [c.201]    [c.209]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.355 , c.356 ]




ПОИСК





Смотрите так же термины и статьи:

Биореакторы



© 2025 chem21.info Реклама на сайте