Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распад углеводов полисахаридов

    Анаэробный распад углеводов ( гликолиз)>) в мышцах и в других тканях. 1. Этот процесс отличается от спиртового брожения в первую очередь тем, что в нем исходным веществом является не глюкоза (или другой моносахарид, легко превращающийся в глюкозу), а полисахарид глюкозы — гликоген. Мышцы и другие животные ткани не могут непосредственно использовать глюкозу или другие моносахариды в их обмене. [c.252]


    Распад углеводов. Пути распада полисахаридов и дисахаридов. Полисахариды и олигосахариды распадаются до более простых соединений посредством реакций двух типов гидролиза и фосфоролиза. Классическим примером распада первого типа является гидролиз крахмала, второго—фосфоролиз гликогена. [c.328]

    Несахароподобные сложные углеводы не обладают сладким вкусом и либо совсем нерастворимы в воде, либо набухают в ней, образуя коллоидные растворы. Они являются высокомолекулярными веществами и называются также высшими полисахаридами при частичном гидролизе они распадаются на более простые полисахариды, или дисахариды, а при полном гидролизе — на сотни и тысячи молекул моносахаридов. [c.221]

    В ткани мозга содержится мало углеводов 70—80 мг% полисахаридов и 40—50 мг% моносахаридов. Поэтому мозг нуждается в непрерывном подвозе глюкозы с током крови. Углеводы в ткани мозга быстро подвергаются распаду п тем самым обеспечивают нервные клетки энергией. [c.244]

    Реакции рекомбинации феноксильных радикалов приводят к образованию новых С-С- и С-О-связей в структуре лигнина, что затрудняет делигнификацию. Рекомбинация же с участием пероксильных радикалов не может дать стабильных связей. Это различие в характере взаимодействия лигнина с кислородом при избытке и недостатке последнего приводит к тому, что присутствующий в древесине и в варочном растворе кислород при обычных щелочных варках может послужить причиной конденсации фрагментов лигнина, в том числе и с участием продуктов окислительного распада углеводов. Не исключается возможность радикальной прививки лигнина к полисахаридам. Поэтому, как уже указывалось ранее, роль вводимых при делигнификации в щелочную среду химических реагентов заключается также в ингибировании окислительных процессов. [c.492]

    II. Сложные углеводы, полисахариды, или полиозы,— углеводы, которые при гидролизе распадаются на более простые сахара. [c.160]

    Дисахариды—сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. Дисахариды наряду с полисахаридами являются одними из основных источников углеводов в пище человека и животных. По строению дисахариды—это гликозиды, в которых 2 молекулы моносахаридов соединены гликозидной связью. [c.179]

    Как уже было указано, несахароподобные сложные углеводы представляют собой высшие полисахариды, являющиеся высокомолекулярными веществами, молекулы которых при полном гидролизе распадаются на очень большое число молекул моносахаридов. [c.259]


    Процесс аэробной стабилизации осадков подобен процессу очистки сточных вод в аэротенках при помощи активного ила. Распад беззольного вещества лежит в пределах от 5 до 50 %. Причем жиры распадаются на 65—15 %, а белки — на 20—30 %. Следует отметить, что содержание углеводов не уменьшается. Это связано с образованием полисахаридов в клетках микроорганизмов. Процесс аэробной стабилизации может осуществляться как в мезофильной (I = 10—42 °С), так и в термофильной ((> 42 °С) области, причем рассматриваемый процесс практически прекращается при <8°С. [c.278]

    Наиболее универсальные пути распада моносахаридов — это распад глюкозы и соответствующих полисахаридов, глюканов (см. гл. 20) до пировиноградной кислоты (путь Эмбдена — Мейергофа — Парнаса) и полное окисление глюкозы до СОз с промежуточным образованием производных пентоз (окислительный пентозофосфатный цикл). В некоторых микроорганизмах существенное значение имеют другие пути метаболизма-углеводов, которые в настоящей книге будут рассмотрены очень кратко. [c.365]

    Углеводный обмен — сложная система биосинтеза и распада углеводов в живых организмах, неотъемлемая часть обмена веществ. Начальный этап углеводного обмена автотрофных организмов — биосинтез моносахаридов (у растений — в результате фотосинтеза, у микроорганизмов — хемосинтеза), и их превращение в полисахариды. В организм человека и животных углеводы попадают с пищей. Под действием ферментов слюны сложные углеводы (например, крахмал, гликоген) частично распадаются на декстрины и мальтозу, в небольших количествах на глюкозу. Превращение их в желудке тормозится понижением pH среды до 1,5—1,8. Углеводы перевариванэтся в основном в двенадцатиперстной кишке и тонком кишечнике под действием ферментов поджелудочной железы и кишечного сока. Под действием а-амилазы поджелудочной железы крахмал и декстрины превращаются До мальтозы, которая под действием мальтазы расщепляется до двух молекул глюкозы. р-Галактозидаза (лактаза) кишечного сока расщепляет лактозу на глюкозу и галактозу, а под действием р-фруктозидазы (сахаразы) образуется глюкоза и фруктоза. [c.208]

    При помощи реакции восстановления металлов обычно производят количественное определение углеводов. В случае моносахаридов определение ведут непосредственно, а полисахариды предварительно подвергают гидролизу, при котором происходит распад на моносахариды и освобождение всех связанных карбонильных групп. [c.130]

    К полисахаридам относятся высокомолекулярные углеводы, которые подвергаются гидролизу, причем каждая молекула полисахарида распадается на большое число молекул моносахаридов. [c.170]

    Сложные углеводы — вещества, способные гидролизоваться и распадаться при этом с образованием моносахаридов. Молекулы сложных углеводов образуются из /г молекул моносахаридов за счет выделения п — 1 молекул воды. Сложные углеводы в свою очередь подразделяются на олигосахариды и полисахариды. [c.204]

    Слол<ные углеводы, поступающие в организм вместе с пищей, под действием ферментов распадаются в кишечнике на различные моносахариды, которые всасываются и разносятся током крови по все,му телу. Осо-бенно большую роль в жизнедеятельности организма играет глюкоза (стр. 228), образующаяся из различных сахаров и гликопротеидов. Поступая с током крови в печень, часть глюкозы подвергается сложному процессу окисления до двуокиси углерода и воды, а освобождающаяся при это.м энергия расходуется клетками печени при многочисленных протекающих в ней химических реакциях. Часть глюкозы превращается в печени в жиры, а часть-г в полисахарид гликоген (животный крахмал). [c.449]

    Очень близок по строению к амилопектину важнейший гомополиса-ларид животного происхождения — гликоген. Гликоген играет в животном организме роль резервного полисахарида. При избытке углеводов пище он, образуясь из избыточной глюкозы, откладывается в печени. Напротив, при недостатке углеводов в пище он распадается, и образующаяся при этом глюкоза поступает в кровь. [c.159]

    Крахмал представляет собой высокомолекулярный полисахарид, построенный из кирпичиков одного типа — молекул углевода глюкозы. Однако крахмал может расщепляться различными путями с образованием неодинаковых продуктов распада, и для этого требуются различные по своему действию амилазы. [c.222]

    При действии минеральных кислот полисахариды, не обладающие свойствами сахаров, распадаются на монозы. Чаще всего конечным продуктом полного гидролиза является О-глюкоза крахмал, гликоген, целлюлоза и лихенин при полном кислотном расщеплении образуют лишь виноградный сахар. Из других сложных углеводов в аналогичных условиях образуются манноза, галактоза, фруктоза или пентозы — арабиноза, ксилоза, фукоза. Многие относящиеся к этой группе несахароподобные полисахариды получили свои названия по конечным продуктам гидролитического расщепления, — например маннаны, галактаны, арабаны. [c.453]


    Т. играет важную роль в процессе обмена углеводов в тканях животных, растений и у микроорганизмов, являясь основным путем как биосинтеза, так и распада олиго- и полисахаридов в биологических системах. [c.120]

    Большая доля органического вещества поверхностных вод образуется при распаде растительно-планктонных организмов. При этом в воду переходят белки и углеводы, составляющие основную массу водорослей, а также составные их части — аминокислоты (аргинин, лизин, гистидин, глицин, аланин и др.), полисахариды (крахмал, клетчатка, гемицеллюлозы и т. д.). [c.23]

    Углеводный комплекс состоит из гемицеллюлоз п целлюлозы, иногда пентозанов и сахаров, извлекаемых водой. Едва ли можно допустить сохранение простых сахаров в процессе превращения растительных остатков. Их правильнее рассматривать как продукт распада более сложных полисахаридов и углеводов. [c.9]

    В натриевых нейтрально-сульфитных щелоках гемицеллюлозы со средней степенью полимеризации 100—112 составляют 20—25 % органических веществ щелока. Замена натриевого основания на аммониевое приводит к дополнительному распаду растворенных полисахаридов. Средняя степень полимеризации гемицеллюлоз, выделенных из аммониевого нейтрально-сульфитного щелока, равняется 30. После осаждения гемицеллюлоз этанолом в щелоке еще остается в небольшом количестве (15— 25%) часть веществ, определяемых как пентозаны. Вероятно, это относительно низкомолекулярные углеводсульфоновые кислоты. Всего в виде углеводов определяется только около 50 % [c.323]

    Облучение 0,25 -ных водных растворов крахмала и инулина - --лучами привело к появлению максимума поглощения в области 265 Л а., причем при ра-диолизе инулина образуется промежуточный продукт с максимумом поглощения при 271 разрушающийся при увеличении интегральной дозы . Образование продукта с максимумом поглощения при 265 м >., как уже указывалось, наблюдалось и при радиолизе растворов фруктозы. Возможно, что появление этой полосы поглошения обусловлено образованием диокси-ацетона , подобно тому, как это было показано выше для глю-козы Интенсивность поглощения, характеризующая распад углеводов, у инулина в 2,5 раза больше, чем у крахмала, что говорит о большей степени деструкции инулина по сравнению с крахмалом. Это, по нашему мнению, связано со структурой полисахаридов. Инулин, как известно, состоит из звеньев фруктозы, [c.139]

    Целлюлоза (клетчатка, вещество клеточных стенок растений ). Истинной клетчаткой или целлюлозой называют совершенно определенный в химическом отношении углевод, который при полном гидролизе целиком распадается на глюкозу. Углевод этот чрезвычайно широко распространен в растительном мире и является основным веществом, из которого строится остов растений. Ботаники часто используют понятие клетчатка несколысо шире, распространяя его и на другие участвующие в построении клеточных стенок полисахариды— маннаны, галактаны и пентозаны, которые наряду с глюкозой содержат также маннозу, галактозу и пентозы. Однако эти комплексные углеводы не используются в качестве чисто строительного материала в определенные периоды жизни растения они могут вновь ассимилироваться и, следовательно, являются резервными питательными веществами. [c.460]

    В углеводном обмене у бактерий катаболизм преобладает над анаболизмом. Сложные углеводы внешней среды могут расщеплять только те бактерии, которые выделяют ферменты — полиса-харидазы. Полисахариды расщепляются до дисахаров, которые под действием олигосахаридаз распадаются до моносахаров, причем внутрь клетки может поступать только глюкоза. Часть ее идет на синтез собственных полисахаридов в клетке, другая часть подвергается дальнейшему расщеплению, который может идти по двум путям по пути анаэробного распада углеводов — брожению (гликолизу) и в аэробных условиях — по пути горения. [c.18]

    Глюкоза (виноградный сахар) как промежуточный продукт распада углеводов встречается в растениях в форме глюкозофосфорных соединений (кислот) глюкозо-1-фосфорная кислота, глюкозо-6-фосфорная кислота и глюкозо-1,б-дифосфор-иая кислота.. Моносахариды манноза, арабииоза и ксилоза входят в состав различных сложных полисахаридов — растительных слизей и гемицеллюлоз. [c.48]

    Биохимические процессы редко бывают простыми. Рассмотрим освобождение энергии из дисахаридов и полисахаридов. Эти углеводы распадаются в желудочно-кишечном тракте до глюкозы, С Н,205, являюшейся первичным источником энергии в живых системах. [c.254]

    В круговороте веществ на земле углеводы занимают промежуточное место между неорганическими и органическими соединениями. Они являются первичными продуктами фотохимического восстановления двуокиси углерода — главного и, вероятно, единственного пути биосинтеза органических веществ в современных геологических условиях. Моносахариды в результате последующих превращений образуют полисахариды — необходимые компоненты любой живой клетки. С другой стороны, при распаде моносахаридов выделяется энергия, требуемая для синтетических процессов в организме, и образуются продукты, являющиеся исходными веществами для биосинтеза других полимеров живой клетки белков, нуклеиновых кислот и липидов. Все сказанное определяет большое разнообразие биохимических реакций моносахаридов и их центральное лоложение в метаболизме живой клеткк [c.363]

    Общие сведения. Высшие полисахариды — полимеры, состоящие из множества структурных звеньев - остат-ков моносахаридов. По принятой классификации углеводов к высшим полисахаридам относят соединения, в состав молекул которых входит более 10 остатков моноз. Они не обладают сладким вкусом, не кристаллизуются ИЯ водных растворов, болг.ишпство из них образует коллоидные растворы. При гидролитическом расн1епле-нии, катализируемом кислотами или ферментами, полисахариды распадаются ла олнго- и моносахариды. Остатки моноз в молекулах полисахаридов соединены гликозидными связями в длинные, часто разветвленные цепи. В зависимости от вида моно , образующих молекулу полисахарида, различают гомо- и гетерополисахариды. Молекулы гомополисахаридов состоят из многочисленных остатков одного моносахарида (глюкозы, фруктозы, галактозы, маннозы и т. д.). В состав молекул гетерополисахаридов входят разнообра.чпые монозы, причем они часто связаны с неуглеводными компонентами (липидами, белками, аминокислотами и т. д.). [c.214]

    В настоящее время известен ряд методов количественного выделения из древесины холоцеллюлозы, состоящей из целлюлозы и гемицеллюлоз, путем перевода в раствор лигнина и продуктов его разрушения. Среди этих методов наибольшее распространение получили обработка хлоритом натрия в уксуснокислой среде, обработка водным раствором перуксусной кислоты, а также хлорирование древесины с последующим удалением хлорированного лигнина раствором пиридина или этаноламина в этиловом спирте [8]. При этих обработках древесина количественно разделяется на полисахариды, образующие нерастворимую фракцию и переходящие в раствор продукты распада лигнина. При этой обработке остатки уксусной кислоты, связанные сложноэфирной связью с ксилоуронидами и глюкоманнаном, не отщепляются. Не отщепляются и остатки метилового спирта, связанные с карбоксилами уроновых кислот также сложноэфирной связью,- Не наблюдается в значительных количествах и расщепление различных видов гликозидных связей, которыми соединены остатки моносахаридов и уроновых кислот в макромолекулах гемицеллюлоз. Не разрушается и простая эфирная связь в остатках 4-0-метилглюкуроновой кислоты. Это указывает на то, что если между лигнином и углеводами существует химическая связь, она должна быть весьма лабильной и отличаться от перечисленных выше. [c.291]

    Желудочный сок не содержит ферментов, расщепляющих сложные углеводы. В желудке действие а-амилазы слюны прекращается, так как желудочное содержимое имеет резко кислую реакцию (pH 1,5—2,5). Однако в более глубоких слоях пищевого комка, куда не сразу проникает желудочный сок, действие амилазы некоторое время продолжается и происходит расщепление полисахаридов с образованием декстринов и мальтозы. Наиболее важная фаза распада крахмала (и гликогена) протекает в двенадцатиперстной кишке под действием а-амилазы поджелудочного сока. Здесь pH возрастает приблизительно до нейтральных значений, при этих условиях а-амилаза панкреатического сока обладает почти максимальной активностью. Этот фермент завершает превращение крахмала и гликогена в мальтозу, начатое амилазой слюны. Напомним, что в молекулах амилопектина и гликогена в точках ветвления существуют также а(1—>6)-глико-зидные связи. Эти связи в кишечнике гидролизуются особыми ферментами амило-1,6-глюкозидазой и олиго-1,6-глюкозидазой (терминальная декстри-наза). [c.320]

    Присутствующие в сточных водах и подвергающиеся биологическому распаду органические вещества классифицируют на три главных категории углеводы, белки и жиры. Углеводы состоят из моносахаридов (единичных сахарных колец), содержащих углерод, водород и кислород. Некоторые моносахариды встречаются в естественном виде. Дисахариды состоят из двух моносахаридов. Сахароза, обычный пищевой сахар, представляет собой соединение остатков глюкозы и фруктозы, в то время как сахар, присутствующий в молоке,—это лактоза, состоящая из глюкозы и галактозы. Полисахариды, состоящие из длинных цепей моносахаридов, могут быть разделены на две группы легкораспадающиеся крахмалы, присутствующие в больших количествах в картофеле, ржи, пшенице и других пищевых продуктах, и целлюлозу, которая присутствует в древесине, хлопке, бумаге и других растительных тканях  [c.25]

    Полисахаридами называются углеводы, которые при гидролизе распадаются с образованием нескольких молекул моносахаридов, далее не гидрол зуюш ихся. Таким 01браз0.м, это ангидридоподобные соедниення, образующиеся при выделении воды нз нескольких молекул моноз  [c.676]

    В семенах фасоли содержатся углеводы в форме полисахаридов. При прорастании семян некоторое количество полисахаридов распадается с образованием редуцирующих сахаров, которые могут быть обнаружены специальными реакциями (Фелинга, Троммера, Ниллендера и др. см. стр. 179., 180). [c.264]

    Полисахаридами, или полиозами, называются углеводы, молекула которых при гидролизе распадается с образованием молекул моносахаридов (как известно, неспособных гидролизоваться). Таким образом, схематически полисахариды можно представить как ангидридоподобные соединения, образующиеся при выделении воды из нескольких молекул моносахаридов  [c.5]

    О роли фосфороргапическпх соединений в важнейших биохимических реакциях организма написаны многие тома. В любом учебнике биохимии эти вещества не только многократно упоминаются, но и подробно описываются. Без фосфорорганических соединений не мог бы идти процесс обмена углеводов в ткани мозга. Фосфорсодержащий фермент фосфорилаза способствует не только распаду, но и синтезу полисахаридов в мозгу. В процессе окисления [c.246]


Смотреть страницы где упоминается термин Распад углеводов полисахаридов: [c.207]    [c.75]    [c.36]    [c.317]    [c.514]    [c.445]    [c.521]    [c.550]    [c.20]    [c.200]    [c.61]    [c.288]    [c.178]   
Химия углеводов (1967) -- [ c.499 , c.500 , c.502 , c.514 ]




ПОИСК





Смотрите так же термины и статьи:

Полисахариды

Распад полисахаридов



© 2025 chem21.info Реклама на сайте