Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каучуки релаксация

    На рисунке представлены данные о влиянии исследуемых веществ на константу скорости химической релаксации напряжения вулканизатов из очищенного бутадиенстирольного каучука. Релаксация проводилась по методике, описанной ранее [10], при постоянном удлинении 60% при 130° в атмосфере воздуха. [c.42]

    Химическая (необратимая) релаксация напряжения может сильно меняться в зависимости от характера вулканизующей системы. В частности, в резинах из полисульфидных и силоксановых каучуков релаксацию напряжения люгут ускорять ионные примеси, оставшиеся после полимеризации и вулканизации. Так, при вулканизации полисульфидного каучука диизоцианатами вместо двуокиси свинца скорость релаксации напряжения снижается в сотни раз .  [c.105]


    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]

    При использовании резин для уплотнений следует учитывать влияние воды на релаксацию напряжений в них. Вода ускоряет релаксационные процессы, как это было установлено на резинах, полученных на основе бутадиен-нитрильных каучуков. Влияние это осложняется окислительными процессами, обусловленными растворенным в воде кислородом. [c.121]

    На рис. 1.18 приведены восемь наиболее характерных релаксационных процессов, которые наблюдаются в наполненных сшитых линейных полимерах (резины). В стеклообразном состоянии обычно наблюдаются процессы у, у и р. Это группа релаксационных механизмов, связанных с подвижностью боковых привесков макромолекул и отдельных ее участков намного меньших сегментов полимерной цепи. а-Процесс соответствует стеклованию, связанному с замораживанием сегментальной подвижности в неупорядоченной части каучука -процесс —потере подвижности сегментов в жесткой части каучука, адсорбированного на активном наполнителе Я- процесс объединяет группу релаксационных процессов, связанных с подвижностью надмолекулярных структур ф-процесс соответствует подвижности частиц активного наполнителя и б-процесс — химической релаксации, связанной с подвижностью химических поперечных связей сшитого полимера. Таким образом, три релаксационных процесса а, X и ф тесным образом связаны с коллоидно-дисперсной структурой полимеров. [c.61]


    Примечательно, что энергия активации вязкого течения исследованных эластомеров совпадает с энергией активации Я-процессов медленной стадии физической релаксации. Например, для сшитого бутадиен-стирольного каучука энергия активации процессов вязкого течения и разрушения в высокоэластическом состоянии и процесса медленной стадии физической релаксации совпадают (54 кДж/моль). По-видимому, механизмы процессов медленной стадии физической релаксации, разрушения и вязкого течения имеют аналогичную природу, связанную с процессом перестройки надмолекулярной организации. Влияние напряжения на скорость вязкого течения связано именно с этой перестройкой и с обратимым разрушением микроблоков, тогда как кинетической единицей процесса вязкого течения является сегмент полимерной цепи (см. сноску на стр. 48). На этом основана наша концепция вязкого течения, изложенная в гл. V. [c.64]

    Как указывалось выше, энергия активации -релаксации в твердой компоненте наполненного полимера больше, чем Я-про-цесса медленной стадии физической релаксации мягкой компоненты. Это можно объяснить тем, что сегменты в твердой составляющей каучука вследствие адсорбционного взаимодействия наполнителя (в данном случае сажи) с полимером находятся в более упорядоченном состоянии, чем связанные сегменты, входящие в микроблоки мягкой составляющей. [c.65]

Рис. 3.2. Кривая релаксации напряжения резины из бутадиенового каучука при 90° С и растяжении 100% Рис. 3.2. <a href="/info/117480">Кривая релаксации напряжения</a> резины из <a href="/info/22308">бутадиенового каучука</a> при 90° С и растяжении 100%
    Релаксационные переходы в полимерах проявляются на разных уровнях их молекулярной и надмолекулярной организации. Данные релаксационной спектрометрии для медленных релаксационных процессов показывают, что на непрерывном спектре времен релаксации (см. рис. 5.1) сшитых наполненных эластомеров кроме известных у- и р-переходов, связанных с мелкомасштабными движениями боковых групп и малых участков макромолекул, и а-перехо-да, связанного с подвижностью свободных сегментов неупорядоченной части эластомера, наблюдается еще 6—8 переходов, которые большей частью могут быть отнесены к медленным релаксационным процессам. Некоторые из них характерны лишь для неполярных эластомеров. Так, а -переход, обязан потере подвижности сегментов в жесткой части каучука, адсорбированного на частицах активного наполнителя Хг, Кг и Лз-переходы объединяют группу из релаксационных процессов (штриховая часть кривой), связанных с временами жизни упорядоченных микрообластей (микроблоков трех типов), ф-переход соответствует подвижности самих частиц наполнителей как узлов сетки полимера, а б-переход соответствует химической релаксации, связанной с подвижностью химических поперечных связей, наблюдаемой в условиях эксплуатации при длительных временах наблюдения. Предполагается, что каждый максимум на непрерывном спектре соответствует отдельному релаксационному переходу. [c.129]

    При движении автомашин со скоростью 60—120 км/ч и при взлете и посадке самолетов со скоростью 200—300 км/ч периодическая деформация в шинах составляет соответственно 5—10 и 15—20 Гц. Как видно из рис. 5.13, б, для этих режимов включается а -проц сс, обусловленный подвижностью сегментов в адсорбированном слое каучука. Шины, кроме того, испытывают и деформации с меньшей частотой при малых скоростях движения и торможения. В этих случаях начинают включаться механизмы релаксации, связанные с подвижностью надмолекулярных и сажевых структур. [c.141]

    К полярным эластомерам относятся бутадиен-нитрильные каучуки СКН-18, СКН-26 и СКН-40. Их релаксационные спектры отличаются от спектров неполярных эластомеров тем, что наряду с -релаксационными переходами здесь наблюдается еще и л-процесс. В полярных эластомерах между полярными группами в макромолекулах (в бутадиен-нитрильных эластомерах — СЫ-группы) возникают локальные диполь-дипольные поперечные связи, которые являются одним из видов физических узлов молекулярной сетки эластомера. Они более стабильны, чем микроблоки надмолекулярной структуры (образованные полибутадиеновыми участками цепей), и менее стабильны, чем химические поперечные связи. В результате л-процесс (см. рис. 12.6), природа которого объясняется подвижностью локальных диполь-дипольных связей, характеризуется временем релаксации Тя большим, чем времена релаксации Я-процессов, и меньшим, чем время химической релаксации сшитого эластомера. [c.348]

    Исследовались несшитые и сшитые бутадиен-нитрильные каучуки с различным содержанием нитрильных СЫ-групп в цепях (18, 26 и 40%). Характеристики процессов разрушения сопоставлены с релаксационными данными (спектры времен релаксации, спектры внутреннего трения и вязкость). [c.348]

Рис. V. 10. Кривая релаксации напряжения для каучука. Рис. V. 10. <a href="/info/117480">Кривая релаксации напряжения</a> для каучука.

    Деформации каучука и резины имеют особенность, заключающуюся в том, что величина напряжения и деформации зависит от скорости деформации и продолжительности действия деформирующей силы. Эта особенность релаксационного характера деформации каучука проявляется в релаксации напряжения, ползучести (крип), упругом последействии. [c.98]

    Чем выше температура, тем больше интенсивность теплового молекулярного движения и тем больше подвижность молекулярных звеньев. Поэтому прп повышенных температурах молекулярные звенья каучука быстрее принимают равновесное состояние и скорость релаксации возрастает. Подобным же образом можно объяснить эластичность каучука, обнаруживаемую при деформациях сжатия, сдвига, изгиба. [c.102]

    Мягчители понижают гистерезисные потери и теплообразование при многократных деформациях вулканизатов, что объясняется повышением мягкости каучука и некоторым повышением скорости релаксации. [c.179]

    Способность резиновых смесей к листованию зависит от их пластичности и способности к быстрой релаксации напряжения, Эти свойства зависят от температуры и состава резиновой смеси, от вида и количества каучука, мягчителей и наполнителей в ней. [c.283]

    Способность твердых тел необратимо поглощать энергию, затрачиваемую на их деформацию без течения (внутреннее трение). Обычно поглощение энергии при деформировании упругих тел мало, но оно может заметно возрастать в нек-рых узких температурных диапазонах, наз. областями релаксац. переходов. При деформировании эластомеров (каучуков и резин) наблюдается заметное поглощение энергии, сопоставимое с энергией упругих колебаний, что приводит к разнообразным гистерезисным явлениям при их деформировании, в частности к значит, саморазогреву при многократных циклич. деформациях. [c.449]

    Специфику переработки каучуков и резиновых смесей определяют их вязкоупругие свойства, проявляющиеся в развитии высокоэластических деформаций, нарастающих до максимума и реализующих структурную релаксацию напряжений. Для измерения реологических (вязкоупругих) свойств, характеристик течения эластомеров и резиновых смесей существует большое количество испытательных приборов [6, 7, 8]. Применение реологических методов в резиновой промышленности включает [9] оценку модулей релаксации резиновых смесей и их поведения при вулканизации, изучение перерабатываемости каучуков, наполненных техническим углеродом, а также тепловыделения в смесях при механическом воздействии на них. [c.437]

    Характерным примером процесса деградации полимера под напряжением является деградация ненасыщенных каучуков в атмосфере озона. Скорости возникновения трещин, их роста, образования свободных радикалов, релаксации напряжения и ползучести увеличиваются в атмосфере озона в тысячу раз и более [196, 197, 199, 201, 204—206]. Данная химическая реакция выяснена не полностью. Обычно предполагается, что первые этапы деградации ненасыщенных полимеров в атмосфере озона соответствуют механизму Криги . [c.314]

    Самый длительный процесс релаксации относится к перестройке вулканизационной пространственной сетки, образованной химическими поперечными связями. Процесс наблюдается как в наполненных, так и ненаполненных полимерах. Энергия активации этого процесса совпадает с известными данными Тобольского [37, с. 228] для химической релаксации вулканизатов каучуков и для б-макси-мума механических потерь .  [c.63]

    Размеры микроблоков надмолекулярных структур, приведенные в табл. I. 1, подтверждаются опытами, в которых для линейных полимеров метилстирольного каучука СКМС-30 и бутадиен-стирольного каучука СКН-26 были исследованы диаграммы растяжения с заданными скоростями деформации (см. табл. 1.2). При тем- пературах ниже Гс (т. е. в области стеклообразного состояния) кривые деформации характеризуются наличием предела вынужденной эластичности Ов, что будет рассмотрено в гл. П. Процесс вынужденной эластичности связан с -тем, что время молекулярной релаксации т, характеризующее подвижность свободных сегментов и близкое по величине (но несколько большее) к среднему конформационному времени Тк [уравнение (1.23)], снижается при больших напряжениях (порядка 10 —10 Па) настолько, что сегменты становятся подвижными и высокоэластическая деформа-ция возможна. [c.66]

    Процесс релаксации напряжения в эластомерах, в частности в резинах, связан с протеканием в них как физических, так и химических процессов (см. 2 гл. П). Физическая релаксация объясняется перегруппировкой различных структурных элементов, выведенных из состояния равновесия внешними силами, и происходящими в поле действия межмолекулярных сил. Процессы ориентации свобо)1ных сегментов определяют быструю стадию физической релаксации, протекающую при обычных температурах практически мгновенно. Именно подвижность свободных сегментов ответственна за основной процесс стеклования, которому соответствует а-процесс в уже знакомом нам (гл. I) спектре времен релаксации, приведенном на рис. П. 14 для резин из диметилстирольного каучука при 20°С. Медленная стадия физической релаксации связана с молекулярной подвижностью сегментов, входящих в элементы надмолекулярной структуры с временами релаксации, находящимися в пределах 10 —10 с (при 20 °С). Это как раз сегменты с максимальной взаимной корреляцией движений. В зависимости от размеров и типа упорядоченных микрообластей, [c.99]

    Структура и релаксационные свойства резин — саженаполнен-ных вулканизатов каучуков — еще сложнее. Деформационные свойства саженаполненных резин могут быть описаны моделью, в котЬрой каучуковая часть резины состоит из двух составляющих мягкой и твердой (см. гл. I). Мягкая составляющая по структуре идентична ненаполненному сшитому каучуку, структура которого рассматривается как состоящая из упорядоченной и неупорядоченной частей. Первая представляет собой совокупность элементов надмолекулярной структуры — упорядоченных микроблоков, связанных в единую пространственную структуру с неупорядоченной частью и состоящих из свободных полимерных цепей и сегментов. Вторая представляет собой объем связанного, т. е. адсорбированного на частицах наполнителя, слоя каучука. Этот адсорбированный слой каучука менее эластичен, чем каучук в мягкой составляющей. В целом сажекаучуковая часть резины состоит из частиц наполнителя, образующих макросетчатую пространственную структуру, и твердой составляющей каучука, связанной с частицами наполнителя. Подвижности сегментов, находящихся в адсорбированном слое каучука, соответствует на рис. II. 14 а -процесс. В ненаполненной резине а -процесс не наблюдается. Более медленные процессы релаксации ф и б объясняются подвижностью самих частиц сажи и химических узлов сетки резины. [c.100]

    Таким образом, в линейных эластомерах наблюдается кроме основного процесса стеклования один побочный, связанный со стеклованием при повышенных температурах упорядоченной части каучука. В наполненных - 5езинах идут два побочных процесса стеклования, связанных со стеклованием в упорядоченной и адсорбированной частях каучука. Для резины из диметилстирольного каучука при 20 °С (см. рис. II. 14) для всех трех процессов релаксации наиболее характерные времена релаксации следующие для а-процесса 10" для а -процесса 0,1, для -процесса 10 —10 с. Это значит, что для этой резины при 20 °С сегментальная подвижность в упорядоченной части каучука заморожена, а в адсорбированной и неупорядоченных частях каучука сегменты еще подвижны. Если резину охлаждать от высоких температур, то вначале [c.100]

    С взаимодействиями все обстоит довольно просто с повышением полярности полимера или появлением в нем групп, способных к образованию водородных связей, повышается и Г". Достаточно убедительны и те примеры, когда взаимодействия усиливаются удалением растворителя или сшивкой (превращение каучука в эбонит). С этих позиций Г" можно определить как температуру, выше которой межцепные взаимодействия становятся настолько слабы, что включается часть релаксационного спектра, в пределах которой находятся времена релаксации сегментов, и для описания свойств системы можно пользоваться в первом приближении одномолекулярной моделью, т. е. пренебрегать корре-лированностью движений сегментов соседних цепей. [c.102]

    Изменение параметров процесса дипольно-сегментальной релаксации при кристаллизации полиэтилентерефталата аналогично их изменению в кристаллизующихся каучуках. Поэтому следует полагать, что причина их изменения одна и та же — сщивающее -действие кристаллических областей. [c.251]

    А. А. Трапезников показал, что весьма характерным реологическим параметром системы является предельная обратимая деформация сдвига еижв, достигаемая в быстро peAaK npjmuinx системах (о релаксации см. ниже) при высокой скорости деформации. В различных коллоидных системах она может быть весьма разной. Например, в пастах она обычно составляет несколько процентов или десятков процентов, тогда как в эластичных г<й1ях и некоторых растворах Полимеров она может, достигать десятка тысяч процентов. Такие значения намного превышают привычные значения предельных обратимых деформаций сдвига каучуков. [c.332]

    Чем больше каучука содержится в резиновой смеси, тем больше величина усадки с повышением содержания наполнителей величина усадки резиновой смеси понижается. Наименьшую усадку имеют резиновые смеси на основе каучука СКБ с высокой пластичностью, порядка 0,50—0,60. Большая усадка (до 80%) может наблюдаться у малонаполненных смесей на основе хлоропренового каучука (наирита). Смеси с ламповой сажей обладают значительно меньшей усадкой по сравнению со смесями, содержащими газовую канальную сажу. С повышением температуры резиновой смеси релаксация напряжения ускоряется, величина эластического восстановления и усадка резиновой смеси по выходе с каландра уменьшаются и благодаря этому процесс каландрования облегчается. [c.285]

    ЭЛАСТОМЕРЫ, полимеры и материалы ца их основе, обладающие высокоэластич. св-вами в широком диапазоне т-р их эксплуатации. Типичные Э.— каучуки и резины. ЭЛЕКТРЕТНО-ТЕРМИЧЕСКИЙ АНАЛИЗ, заключается в получ. электрета (обычно термо- или короноэлектрета) и послед, измерении токов термостимулироваиной деполяризации — ТСД (при наличии остаточной поляризации) или термостимулированных токов — ТСТ (при наличии инжектированных з у)Ядов) при программированном нагреваиии электрета. ТСД вызывается разориентацией диполей, релаксацией смещенных ионов, ТСТ — освобождением и переносом носителей зарядов, локализованных на центрах захвата. Записью токов во времени получают термограммы, на к-рых обычно наблюдаются один или неск. максимумов, т-ры к-рых соответствуют т-рам релаксац. переходов (ТСД) при эквивалентных частотах 10 —10 Гц. По термограммам ТСД рассчитывают поляризац. заряд, его время релаксации и энергию активации релаксации, инкремент диэлектрич. проницаемости, величину и кол-во диполей, по термограммам ТСТ — время релаксации и величину инжектированных зарядов, энергию активации релаксации, глубину ловушек и их кол-во, подвижность носителей зарядов. Э.-т. а. примен. для исследования релаксац. переходов в полимерах и др. твердых диэлектриках и полупроводниках, а также для определения параметров и - времени жизни электретов. [c.696]

    Т. полимеров-чувствит. метод изучения разл. типдв сегментальной подвижности и релаксац. процессов, диффузии низкомол. примесей, структурных переходов и т.п. Лучше всего исследована радиотермолюминесцешщя полимеров (метод РТЛ), стимулированная у-квантами или быстрыми электронами при т-ре жидкого азота (77 К). Поскольку вид кривой РТЛ зависит от структуры и предыстории образца, метод РТЛ используют при исследовании вулканизации, пластификации, ориентации полимеров и т. п. Изучение РТЛ в поле мех. напряжений позволяет выяснять мол. механизм вынужденной высокоэластичности. Положение максимумов на кривой РТЛ служит для определения состава и однородности смесей полимеров напр., наличие полиэтилена, натурального или изопренового каучука в многокомпонентных смесях удается обнаруживать при их содержании 1-2%. [c.542]

    Растворимость постоянных газов в полимерах довольно мала, чтобы повлиять на деформацию и перестройку структуры полимера Так, растворимость азота в натуральном каучуке составляет всего около 0,01 вес.%, что соответствует концентрации приблизительно в одну молекулу азота на 5500 звеньев цепной молекулы полиизопрена. Действительно, неоднократно экспериментально показывалось, что в пределах подчинимости закону Генри коэффициент растворимости газов и паров сохраняется постоянным независимо от давления Однако при сорбции легко конденсируемых паров коэффициент сорбции может существенно зависеть от концентрации или давления паров сорбируемого вещества. Хорошие растворители могут сорбироваться полимерами в больших количествах, что приводит к искажению структуры полимера, в частности к его пластификации, изменению морфологии кристаллических образований и релаксации напряжений. Для сорбции неполярных паров органических растворителей полиэтиленоми другими неполярными полимерами выведено полуэмпирическое уравнение изотермы абсорбции [c.49]

    В действительности измерения релаксации напряжения скрывают широкий спектр времён релаксации и весьма чувствительны к структуре полимера. Повышение молекулярной массы ( т.е. увеличение вязкости по Муни ) и возрастание длинноцепочечной разветвлён-ности приводят к более длительным релаксационным процессам, т.е. к меньшим значениям ( абсолютным ) наклона кривой. Однако в отличие от Л6 этот показатель зависит от вязкости по Муни. Более вязкие каучуки имеют более длинные полимерные цепи, что приводит к большему числу точек физического межмолекулярного взаимодействия и, следовательно, к замедлению релаксационных процессов. Однако такое же влияние на скорость релаксации оказывает и повьипе-ние длинноцепочечной разветвленности. [c.441]

    В качестве критерия для оценки перерабатываемости каучуков было предложено tgo - время, в течение которого величина крутящего момента в результате релаксации снижается на 80 %, т.е. М, = 0,2 К (ASTM D1646-96). Поскольку tgo - это время, при котором f = 0,2, то tso является другим способом выражения наклона кривой релаксации напряжения. Однако tso есть результат единичного измерения, тогда как наклон кривой релаксации а рассчитывается по многим точкам, и поэтому следует ожидать большей точности его определения. В момент, когда достигается значение крутящего момента снижается до весьма низкого уровня и доля помех в измеряемой величине (выражаемая как коэффициент вариации V) становится больше. [c.442]


Смотреть страницы где упоминается термин Каучуки релаксация: [c.122]    [c.123]    [c.318]    [c.66]    [c.250]    [c.250]    [c.64]    [c.349]    [c.284]    [c.371]    [c.153]    [c.441]    [c.444]   
Технология резины (1967) -- [ c.98 ]

Технология резины (1964) -- [ c.98 ]




ПОИСК







© 2025 chem21.info Реклама на сайте