Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика стехиометрическая

    В последнее время наметилась тенденция к изучению кинетики стехиометрического взаимодействия гидрокарбонила кобальта с ненасыщенными соединениями. Однако скорость и полнота протекания реакции до сих пор оценивалась, как правило, по скорости и величине поглощения газа [1, 2], что, на наш взгляд, не позволяет достаточно полно судить о кинетических особенностях протекания отдельных стадий реакции. [c.38]


    Двумя другими важными характеристиками электрохимических реакций являются их порядок и стехиометрическое число. Порядок электрохимической реакции v имеет здесь тот же физический смысл, что и в учении о кинетике химических реакций, хотя в этом случае V, кроме обычных параметров — давления и температуры, может быть функцией потенциала электрода. Порядок электрохимической реакции по отношению к какому-либо виду частиц vy можно найти на основании изучения зависимости плотности тока от концентрации частиц данного вида при условии постоянства концентрации всех остальных видов частиц, а также температуры, давления и потенциала электрода  [c.368]

    Если стехиометрическое уравнение отражает механизм реакции, то можно сказать, что молекулярность п порядок (или стехиометрия и кинетика) совпадают. [c.85]

    Упражнение Х.2. Реакция между растворенными веществами А и В, находящимися в стехиометрических пропорциях, проводится периодически до 90%-го превращения. Кинетика реакции определяется выражением  [c.311]

    Скорость некоторых реакций в газовой фазе возрастает в присутствии твердых катализаторов. Вследствие прохождения реакции через промежуточные этапы энергия ее активации становится меньше, чем в гомогенной фазе. Катализатор влияет на кинетику реакции, но стехиометрическое уравнение и состояние равновесия при этом не меняются. [c.271]

    Японские исследователи изучали кинетику реакции в присутствии 36%-ной соляной кислоты и промотора — тиогликолевой кислоты при таких условиях, когда выход дифенилолпропана составляет 80—90%, что позволяет считать реакцию необратимой (температура 25—45°С). Были выведены кинетические уравнения для двух случаев. В одном случае фенол берут в большом избытке по сравнению со стехиометрическим (мольное соотношение фенол ацетон = 10 1). Тогда скорость реакции зависит только от концентрации ацетона, что и было подтверждено экспериментальными данными по изменению концентрации ацетона. При стехиометрическом соотношении фенол ацетон было экспериментально установлено, что скорость зависит от концентрации обоих компонентов и имеет первый порядок по ацетону и второй — по фенолу  [c.86]

    Индийские исследователи изучали кинетику реакции в присутствии безводного хлористого водорода и различных промоторов (этил-, бутил- и гексилмеркаптана, а также тиогликолевой кислоты). По ходу процесса определяли концентрации ацетона и дифенилолпропана, а количество фенола рассчитывали по количеству дифенилолпропана, считая, что фенол реагирует с ацетоном точно по стехиометрическому соотношению и не расходуется на образование побочных продуктов. Авторы, предположив, что реакция образования дифенилолпропана подчиняется уравнению второго порядка [c.86]


    В этом случае из термодинамических соображений следует, что п=1/А. Вообще, необходимо отметить, что когда пФ, показатель степени во всех случаях зависит от выбора стехиометри-ческого уравнения, и следовательно, от вида константы равновесия, однако, не находится в прямой зависимости от кинетики реакции. В приведенном выше случае стехиометрические соот- [c.31]

    Следует отметить, что стехиометрическое уравнение не дает возможности описать кинетику процесса. Для вычисления скорости реакции видоизменим формулу (I, 10) [c.13]

    Интересно, что для неизотермических систем с постоянной теплоемкостью с г можно построить несколько экзотическую кинетику, в которой концентрация и температура как бы обменяются местами. Действительно, введя новое вещество (точнее — скалярный продукт) Т с концентрацией Т и химическим потенциалом вида .1(Г) = = ст НТ, стехиометрические уравнения (3.4) можно записать в виде [c.122]

    Из схемы универсального последовательного анализа (см. рис. 14) видно, что этап стехиометрического анализа предшествует кинетическому. Он, однако, не просто предшествует ему, но и лежит в основе последнего, поскольку балансовые ограничения носят принципиальный характер и, являясь одной из форм закона сохранения вещества, в значительной степени определяют основные особенности кинетики сложного процесса. Перечислим конкретные задачи начального этапа анализа. [c.127]

    Для описания адекватной модели традиционно используются следующие группы характеристик — стехиометрические, равновесные термодинамические и кинетические. Стехиометрические характеристики не связаны с кинетикой процесса являясь конкретным выражением ОКТ (3.1), они налагают на процесс лишь балансовые ограничения. То же самое можно, в принципе, сказать и о равновесных термодинамических характеристиках. Что же касается кинетических характеристик, то до последнего времени под исследованием кинетики сложного химического процесса традиционно понималось определение его кинетических характеристик [63, 68]. Одной из важнейших таких характеристик является кинетическая доля стадии [c.234]

    Синтез механизмов реакции на основе стехиометрического анализа системы. Роль второго этана в общей ППР для определения механизма и кинетики химической реакции исключительно велика, ибо необоснованно выбранная или неполная система гипотез о механизме реакции не может привести к построению адекватной модели химической реакции. Практика показывает при этом, что экспериментатор, исходя из интуитивных соображений, как правило, не может выбрать достаточно полную систему конкурирующих гипотез, особенно для многостадийных химических реакций. [c.173]

    Уравнения лангмюровской кинетики могут быть написаны и для произвольной реакции, которой соответствует стехиометрическое уравнение (П.1). Подставляя выражение (1.12) в (П.86), получаем  [c.82]

    Задача определения неизвестных параметров кинетических уравнений по экспериментальным данным станет, по-ввдимому, более корректной, если при ее решении будет, кроме соотношений вида (XI.И)—(XI.14), учитываться и другая информация о кинетике процесса и о константах, например, положительность величин к и и их приближенное равенство стехиометрическим коэффициентам для реакций низких порядков, отрицательность порядков по веществам, тормозящим процесс, и т. д. [c.429]

    Основу описания первого уровня составляют феноменологические и статистические методы физико-химической кинетики и химической термодинамики. Центральная проблема этого уровня— расшифровка механизмов сложных химических реакций,, стехиометрический анализ, составление уравнений скоростей реакций и расчет кинетических констант. [c.44]

    Исходные данные. Кинетика реакции на железосодержащих катализаторах достаточно хорошо описывается уравнением Темкина — Пыжева [2]. При стехиометрическом составе исходной смеси с учетом разбавления инертами кинетическое уравнение может быть записано в виде [c.211]

    Следовательно, система п дифференциальных уравнений сводится к системе д дифференциальных уравнений. Как будет показано ниже на конкретном примере, обычно существующие линейные связи между концентрациями легко находятся непосредственно из условий материального баланса. Поэтому можно сформулировать следующее общее положение число дифференциальных уравнений, необходимых для описания кинетики сложного химического процесса, равно числу линейно независимых стехиометрических уравнений, необходимых для описания схемы процесса. [c.146]

    Если сложная реакция, кинетика которой описывается уравнением вида (IV. 11), является обратимой, то при этом должно иметь место соответствие между стехиометрическим и кинетическим уравнением реакции. [c.150]

    Поскольку процесс описывается четырьмя стехиометрическими уравнениями, для описания кинетики процесса необходимо составить и проинтегрировать систему четырех дифференциальных уравнений. Однако два из этих четырех дифференциальных уравнений легко могут быть преобразованы в алгебраические с помощью метода стационарных концентраций, поскольку в процессе принимают участие две активные промежуточные частицы — свободные [c.228]

    Абсолютное значение константы скорости разветвления цепей может быть найдено из данных по кинетике реакции окисления водорода над нижним пределом. На рис. 90 приведена кинетическая кривая изменения давления в системе по ходу реакции при окислении стехиометрической смеси 2Н2+О2 при температуре [c.325]


    Во-первых, авторы сочли целесообразным не выделять в отдельную главу вопрос о кинетическом уравнении химического процесса. Содержавшиеся ранее в этой главе параграфы, посвященные изложению общих принципов составления и использования кинетических уравнений для одностадийных и многостадийных реакций, предпосланы в виде отдельных параграфов в главах, посвященных рассмотрению кинетики реакций простых типов и кинетики сложных реакций. Вопрос о соответствии кинетического и стехиометрического уравнения реакции вынесен в гл. 11, в которой, как и в предыдущих изданиях, излагаются основные понятия химической кинетики. [c.5]

    Очевидно, что такое определение скорости реакции позволяет предполагать ее неоднозначность, так как в случае участия в реакции множества веществ скорость, определенная по каждому из этих веществ, отличается пропорционально стехиометрическому коэффициенту соответствующего вещества. Это обстоятельство следует учитывать при исследовании кинетики химических процессов. [c.155]

    Особое место в изучении химической кинетики занимает вопрос о влиянии на протекание процесса примесей, участие которых в последнем не учитывается стехиометрическим уравнением реакции. Такие примеси в 1835—1836 гг. были названы шведом И. Я. Берцелиусом (1779—1848) катализаторами он же ввел в науку термин катализ. Под последним подразумевалось ускоряющее действие на химические процессы присутствия в реагирующей системе тел, не принимающих видимого участия в реакциях Сущность каталитической силы состоит в том, что тело лишь одним своим присутствием. .. может возбуждать дремлющие химические сродства взаимодействующих веществ . Однако Берцелиусу не удалось отстоять представления о катализе и понятие о нем прочно вошло в химию лишь благодаря работам Оствальда, проведенным в 1894—1911 гг. Оствальд дал катализу подробное научное объяснение, основанное на законах термодинамики это объяснение не утратило своего значения и поныне. [c.169]

    Особую роль водорода как астехиометрического компонента ряда реакций (конфигурационная изомеризация, миграция двойной связи в олефинах и др.) обсуждает Я. Т. Эйдус [41]. Влияние астехиометрического компонента выражается в инициировании реакции, в изменении ее кинетики, избирательности, механизма и пр. Атомы астехиометрического компонента в отличие от атомов реагентов не входят в молекулы конечных продуктов реакции или входят без соблюдения стехиометрических отношений. Таким образом, эти вещества не входят в стехиометрию реакции, не фигурируют в ее суммарном химическом уравнении и являются как бы посторонними компонентами реакционной системы, почему и получили название астехиометрических. [c.77]

    Чем выше температура, тем ниже значение аравн-Исследование кинетики реакции при 240 ат на катализаторе, приводящем к снижению энергии активации до 20 ккал, дало результаты, представленные на рис. 1Х-76. Превращению подвергалась стехиометрическая смесь исходных веществ (ларциальныа [c.425]

    Непосредственное экспериментальное изучение кинетики тон или иной химической реакции только в исключительных случаях позволяет отнести ее к одной из указанных групп. Это удается сделать только для так называемых простык реакций, протекающих в одну стадию, уравнение которой совпадает со стехиометрическим уравнением реакции в целом (например, разложение и синтез иодистого водорода, разложение двуокиси азота и нитрозилхлорида и некоторые другие). Большинство же химических реакций является совокупностью нескольких последовательных (а иногда и параллельных) элементарных реакций, каждая из которых может принадлежать к любой из указан-ных выше кинетических групп. Это обстоятельство неизбежно осложняет кинетику процесса в целом, Б простейшем случае, f если одна из элементарных реакций протекает значительно Т> медленнее остальных, наблюдаемый кинетический закон будет соответствовать именно этой реакции. Если же скорости от-дельных стадий сравнимы, экспериментальная кинетика может быть еще более осложнена. [c.17]

    При химической группировке схема процесса устанавливается на основе изучения кинетики реакций, что позволяет выявить промежуточные и конечные продукты. В случае технологической группировки обязательна проверка теоретически обоснованных схем, например подтверждением очевидных для выбранной схемы соотношений. Этот метод не требует знания кинетических уравнений скоростей отдельных стадий. Если число реагирующих веществ больше числа реакций, можно проверить постоянство некоторых стехиометрических коэффициентов V, входящих в уравнения реакций 21IV,-А,—. [c.101]

    Кинетическое уравнение реакции, или выражение для скорости образования продуктов, не обязательно согласуется со стехиометрией полного уравнения реакции. В тех случаях, когда существует такое соответствие, его можно рассматривать как предположительное указание на одноступенчатый характер полной реакции (однако подобный вывод может оказаться ошибочным, как в случае с HI). Если же кинетическое уравнение реакции не согласуется с ее стехиометрическим уравнением, как в случае с НВг, это явно указывает на то, что полная реакция протекает в несколько более простых стадий. Если одна из таких стадий осуществляется намного медленнее, чем другие, кинетика полной реакции контролируется этой ско-ростьонределяющей стадией. [c.392]

    Рассмотрим вначале феноменологическую кинетику реакции во йпутридиффузионной области. Если скорость химической реакции в единице объема пористой частицы равна р (с, Т), то распределение концентрации с любого г-го вещества со стехиометрическим коэффициентом V внутри частицы произвольной формы определяется решением системы дифференциальных уравнений  [c.57]

    Блокировать активную поверхность может продукт реакции или одно из исходных веществ блокирующее вещество может стехиометрически и не участвовать в реакции. Последний случай особенно важен для каталитических реакций в ншдкой фазе. Растворители, в отличие от инертных газов в газофазных процессах, имеют, как правило, достаточно высокие адсорбционные Коэффициенты, и замена одного растворителя другим может привести к резкому изменению кинетики каталитической реакции. Блокирование поверхности исходным веществом может вызвать специфическое для гетерогенного катализа явление самоторможения процесса, когда одно иа исходных веществ, сильно адсорбируясь на поверхности катализатора, затрудняет доступ к ней остальных реагентов и тем самым замедляет каталитическую реакцию. [c.83]

    Ранг К новой матрицы стехиометрических коэффициентов v, равный минимальному числу переменных, необходимых для однозначного описания кинетики процесса, согласно уравнению (11.119), не может превышать ранга матрицы а, т. е. числа лИвейно-независи-ных маршрутов. Если величина К меньше чем Р, то независимые переменные, определяющие состояние системы — концентрации ключевых веществ или степени полноты независимых реакций, выбираются так же, как в разделе II. 2. -, [c.91]

    В последнее время был обнаружен, одпако, ряд реакций обмена, кинетика которых отличается от закона второго порядка, какого следует ожидать на основании стехиометрического уравнения реакции. По-видимому, это отличие связано с теми же причинами, которые для мономолекулярных реакций приводят к отклонению кинетики от закона первого порядка — сильному нарушению равновесного распределения по внутренним состояниям реагирующих молекул. Отсюда возникает важная теоретическая задача описапин кинетики неравновесных химических реа1щий. Это может быть сделано только в результате формулировки кинетических уравнений на микроскопическом уровне. Эти вопросы, а также кинетические параметры, необходимые для такого описания, обсуждаются ниже. [c.38]

    Скорость элементарной реакции равна произведению концентраций реагентов, участвующих в химическом акп1е, возведенных в степени, равные стехиометрическим коэффициентам реакции. Уравнение (195.1) является основным законом кинетики. Коэффициенты v могут принимать только целые положительные значения, равные 1, 2, 3. Закон действующих масс был впервые сформулирован Гульдбергом и Вааге (1867). Пфаундлер уравнение (195.1) теоретически вывел на базе молекулярно-кинетической теории (1867). Часто односторонние реакции могут протекать через стадии образования промежуточных соединений реагирующих молекул с молекулами растворителя или катализатора, с последующим превращением в продукты реакции. Тогда уравнение скорости химической реакции записывают в форме [c.533]

    При заданных внешних условиях (Т, Р, среда, Ю) скоросчь является функцией копцентрации реагирующих веществ. Основной постулат химической кинетики (закон действующих масс, Гульдберг и Вааге) определяет, что скорость реакции, протекающей в статических условиях, пр0110р1ДИ011альна произведению концентрации реагирующих веществ в с гспенях, равных их стехиометрическим коэффициентам в уравнении реакции  [c.137]

    Эта глава посвящена простым реакциям, т. е. реакциям, протекание которых можно достаточно хорошо описать всего одним кинетическим уравнением в сочетании со стехиометрическим соотношением и условиями равновесия. Для таких реакций избирательность задана и постоянна следовательно, основным фактором, определяющим расчет реактора, является его размер, необходимый для. достижения заданной производительности. Кроме того, в данной главе изложены вопросы сравнения размеров одиночных реакторов с размерами реакторов в сложных системах, содержащих ряд реакционных аппаратов в различных комбинациях (сначала для необратимых реакций п-го порядка, а затем для реакций с более сложной кинетикой). В конце главы расскотрены уникальные по свойствам автокаталитические реакции. Расчет сложных реакций, для которых решающим фактором является избирательность процесса, приведен в следующей главе. [c.131]

    Изучение кинетики и нахождение удовлетворительного механизма смешанных реакций представляют известные трудности. Тем не менее, хотя кинетика их может быть очень сложной, это не препятствует организации управления смешанными реакциями зная стехиометрические соотношения и скорость реакций, можно легко ими управлять. Например, с одной стороны, если отношение является постоянным, то нельзя изменить соотношение продуктов параллельных реакций первого порядка в реакционной массе. Аналогично, при необратимых последовательных реакциях первого порядка обеспечиваются строго определенные соотношения концентраций целевых продуктов и концентрация промежуточного продукта. С другой стороны, в случае смешанной реакции мы располагаем большими возможностями для управления соотношением продуктов ее в реакционной смесн. Варьируя, скажем, лорядок сливания реагентов (приливая А к В или наоборот), можно совершенно изменить соотношение продуктов реакции. [c.186]

    Таким образом, основным условием оптимального проведения сложных реакций является правильный выбор аппаратурного оформления процесса с учетом характера движения жидкости в реакторе. Это условие определяется стехиометрическими соотношениями и наблюдаемой кинетикой реакций. Для обеспечения высокого выхода целевого продукта можно осуществлять процесс при высоких и низких концентрациях (параллельные реакции) или при постоянно соотношении концентраций (последовательные реакции) различных компонентов. В соответствии с. указанным требованием выбирают подходящую гидродинамическую модель, которая может быть реализована в реакторах периодического и пол упер иодического действия идеального вытеснения или в проточном реакторе идеального, смешения при медленном или быстром введении исходных реагентов. [c.199]

    При известных кинетике и стехиометрических соотношениях реакции путем экспериментальных исследований, результаты i oro-рых анализируют в соответствии с принципами, изложенными в этой главе, можно весьма точно найти оптимальные условия проведения процесса. Дополнительные вопросы, связанные с влиянием температуры и гидродинамической модели на соотношение продуктов реакции в их смеси, описаны в главах УП1 и X, а также в главах, посвященных гетерогенным процессам. [c.199]

    Экспериментальное изучение кинетики химической реакции только в исключительных случаях позволяет отнести ее к одному из перечисленных процессов. Это удается сделать для наиболее простых (элементарных) реакций, протекающих в одну стадию, когда уравнение процесса, на основе которого составляется кинетическое уравнение, совпадает со стехиометрическим уравнением реакции в целом, например, для реакции синтеза и разложения и0дист010 водорода, реакции разложения двуокиси азота и др. [c.313]

    Одна из задач химической кинетики состоит в определении порядка реакции (т и п) по отдельным компонентам. Лишь редко случается, что лорядок реакции по данному компоненту совпадает со стехиометрическим коэффициентом уравнения реакции. Одной из таких редких реакций является образование ио-доводорода (2)  [c.151]


Смотреть страницы где упоминается термин Кинетика стехиометрическая: [c.188]    [c.209]    [c.203]    [c.3]    [c.334]    [c.125]    [c.22]    [c.490]   
Химические приложения топологии и теории графов (1987) -- [ c.374 ]




ПОИСК





Смотрите так же термины и статьи:

Реакция уравнения кинетики и стехиометрическое

стехиометрический



© 2025 chem21.info Реклама на сайте