Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение фосфора германии

    Наиболее избирательным экстрагентом для фосфорномолибденовой гетерополикислоты является бутилацетат [1186]. 20%-ный раствор бутанола в хлороформе меньше экстрагирует посторонних ионов, например Fe. Метод применяют для определения фосфора в стали, в металлической меди [1218] и окиси германия [809]. [c.88]

    Опубликованы данные о влиянии различных факторов на экстракцию гетерополикислот, а также варианты методик для экстракционного разделения и фотометрического определения фосфора, мышьяка, кремния, германия и ванадия в форме соответству-юш,их гетерополикислот в различных материалах. [c.239]


    ХИМИКО-СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ ФОСФОРА В КРЕМНИИ, ДВУОКИСИ КРЕМНИЯ, КВАРЦЕ И ГЕРМАНИИ 1 [c.84]

    Метод основан на спектральном определении фосфора в концентрате, полученном при химическом обогащении пробы путем удаления основного элемента — кремния в виде тетрафторида или германия в виде тетрахлорида. [c.84]

    Чувствительность определения фосфора в кремнии, двуокиси кремния, кварце и германии при навеске 2 г равна 3-10 %. За чувствительность определения принята минимальная определяемая концентрация фосфора, лежащая на прямолинейном участке градуировочного графика. [c.84]

    Коэффициент вариации для определения фосфора в кремнии равен 50%, в двуокиси кремния и кварце— 14%, в германии — 20%. [c.84]

    Определению фосфора этим методом мешают 100-кратные количества кремния и германия. [c.219]

    Предложен метод определения кремния в присутствии мышьяка и фосфора [69], основанный на экстракции силиката (1 — 10 мкг) изобутилметилкетоном с последующим измерением методов ААС. Определению мешает германий. [c.201]

Таблица 31. Методы определения фосфора, мышьяка, кремния и германия, основанные на экстракции гетерополикислот Таблица 31. <a href="/info/255870">Методы определения фосфора</a>, мышьяка, кремния и германия, основанные на экстракции гетерополикислот
    Определению фосфора мешают мышьяк, кремний, германий, способные к образованию гетерополикислот, а также ионы, имеющие собственную окраску (например, ионы трехвалентного железа). Присутствие больших количеств хлоридов и фторидов затрудняет образование гетерополикислоты вследствие параллельно протекающей реакции образования галогенидных комплексов ванадия и молибдена. [c.183]

    Углерод, азот и кислород методом ААА определять нельзя. При определении же германия, циркония, гафния, ниобия, тантала, вольфрама и, в особенности, фосфора в случае работы с пламенами не удается достичь достаточно низких для большинства практических задач пределов обнаружения. [c.190]

    Здесь будет описано определение кремния, германия, галоидов, включая и фтор, серы, бора и фосфора с применением щелочи и карбоната натрия для разрушения органических веществ методом сплавления в бомбе. Этот метод особенно целесообразно применять для определения нескольких из указанных выше элементов из одной навески. [c.119]


    Наиболее распространенным методом определения малых содержаний таких элементов, как фосфор, мышьяк, кремний, германий, является спектрофотометрия. Так, наукометрический анализ литературы показывает, что на долю фотометрических методов 1ри-ходится треть от общего числа публикуемых в настоящее время методик определения фосфора если же не учитывать физические методы, то доля фотометрии повышается до 50 [28]. Причем фото- [c.148]

    Уравнения кинетики реакций, протекающих в потоке, выведены Панченковым [1], для описания изотермических процессов. Часто в реальных условиях реакция идет в зоне со сложным профилем распределения температуры. Изучение суммарной кинетики таких процессов можно проводить и в этих условиях. Полное описание химической реакции приводит в этом случае к уравнениям, нахождение кинетических констант реакции но которым представляет сложную вычислительную задачу. Анализ этих уравнений позволяет найти способ более простого определения интересующих констант при соответствующем выборе исходных параметров. Так, реакция между хлоридами (бора, кремния, фосфора, германия) и кислородом при получении стекла световодов по методу парофазного осаждения внутри кварцевых труб [2, 3] протекает в зоне, создаваемой горелкой, с куполообразным по длине трубки распределением температуры. При изучении кинетики реакции в этих условиях контролируемыми параметрами могут быть концентрацни на входе и на выходе реакционной зоны и профиль температур, который создает горелка. Прн этом удобно в процессе изучения более или менее выдерживать постоянство формы температурного поля (за счет постоянства формы пламени горелки), меняя лишь высоту температурной кривой, а максимальную температуру измерять и использовать ее величину в качестве одного из контролируемых параметров. Еще одним парметром для кинетики процесса будет тогда эффективная величина реакционной зоны, которая связана с формой температурной кривой и положением ее максимума. [c.96]

    Проводимость таких веществ, как кремний и германий, можно повысить, вводя в них небольшое количество определенных примесей. Например, введение в кристаллы кремния примесей бора или фосфора приводит к эффективному сужению межзонной щели. Небольшие количества бора или фосфора (несколько миллионных долей) удается включить в структуру кремния при выращивании кристалла. Атом фосфора имеет пять валентных электронов, и поэтому, после того как четыре из них используют- [c.631]

    Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка 4,4 кДж/моль способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах кремния и германия примесные атомы мышьяка, сурьмы и золота, обычно называемые донорными примесями. Для получения полупроводника с определенной концентрацией носителей (электронов или дырок) необходимо, чтобы количество собственных переносчиков тока в кристалле было примерно на два порядка ниже. [c.89]

    С целью убыстрения процесса очистки применяют установки, снабженные серией нагревательных элементов, В этом случае в слитке одновременно возникает несколько зон плавления (по числу нагревателей). Эти зоны следуют одна за другой с определенным интервалом. Поступают и так серия нагревателей остается неподвижной, а лодочка со слитком медленно продвигается сквозь зоны нагрева (рис. ХХ-4). Метод зонной плавки высокоэффективен. Им удается очистить, например, германий от примесей фосфора, мышьяка и сурьмы до одного атома примеси на Ю атомов германия (чистота получаемых металлов 99, 999 999 9% Ое, 99, 999 99% Аи и т. д.). [c.461]

    В нефти В очень малых количествах присутствуют и другие элементы, главным образом металлы ванадий, хром, никель, железо, кобальт, магний, титан, натрий, кальций, германий, а также фосфор и кремний. При определении элементарного состава нефти эти элементы концентрируются в остатке, называемом золой. [c.18]

    Как уже указывалось, многие гетерополисоединения вольфрама и молибдена нашли практическое применение. В частности, они широко ипользуются в аналитической химии для определения ряда элементов. Так, фосфоромолибдат аммония-магния используется для определения магния, молибдена, фосфора. Для определения кремния, фосфора, германия, мышьяка и церия также применяют соответствующие гетеро-полимолибдаты. Рубидий и цезий определяются в виде кремнемолибда-тов и кремневольфраматов. [c.244]

    Поскольку фосфор образует комплексные гетерополикислоты, то он может быть определен, подобно германию (см. Германий ), прп помощи нитрона в гликолевом буферном растворе Образованием фосфорномолибденовой гетерополикислоты пользуется Хлебовский предложивший чрезвычайно сложный метод косвенного определения фосфора в минералах и сплавах. После разложения пробы получают осадок гетерополикислоты, экстрагируют его изобутиловым спиртом водную фазу, содержащую избыток молибдата, примененного для осаждения фосфора, обрабатывают амальгамой цинка для восстановления молибдена (VI) до молибдена (III) и титруют последний раствором железа (III). Описанные операции сопровождаются, конечно, многократными промываниями и фильтрованиями, причем мышьяк надо удалять возгонкой, а ванадий восстанавливают до низшей валентности, чтобы он не участвовал в образовании гетерополикислоты. По нашему мнению, такой способ вряд ли может получить практическое применение не только вследствие исключительной громоздкости, но и потому, что точность его весьма сомнительна. [c.329]


    Марганец полярографируем в форме его комплекса с триэтанол-амином. Микронавеску анализируемого вещества разлагаем смесью серной кислоты с перекисью водорода в фарфоровом тигле, упариваем почти досуха и растворяем в соляной кислоте. Фоном служит щелочной раствор триэтаноламина с добавкой желатина [12]. Потенциал полуволны комплекса марганца с триэтанолами-ном —0,5 в (отн. Н.К.Э.). Стандартом служит МпС12-4Н20. Присутствующие в органических соединениях галогены, сера, фосфор, германий и ртуть определению марганца не мешают (см. табл. 1) [17]. [c.158]

    Гетерополикомплексами (ГПК) называют группу соединений, состояш их из малого центрального атома, чаще всего Р, 51 или других, и координированных ионов, способных к полимеризации. Для фотометрического анализа наиболее важны ГПК, содержащие в качестве координированных групп полиионы молибдата. Центральным атомом окрашенных ГПК могут быть фосфор, кремний, мышьяк, а также бор, германий и некоторые другие 28—30]. Для определения мышьяка, германия и т. п. имеется немало других более чувствительных и более избирательных методов однако для определения фосфора и кремния образование их ГПК имеет чрезвычайно важное значение. Поэтому ниже главное внимание уделяется этим соединениям. [c.258]

    Германий (IV) можно количественно осадить в виде ортогермаиата магния Mg2Ge04 из аммиачного раствора Этот метод подобен методу определения фосфора и мышьяка. Основное отличие его заключается в том, что германий осаждают смесью сульфатов магния и аммония вместо обычно применяемой магнезиальной смеси. Это делается для того, чтобы осадок ортогермаиата магния был свободен от хлоридов, в присутствии которых германий при прокаливании может частично улетучиться в виде хлорида германия (IV). В присутствии тартрата аммония ортогерманат магния на осаждается, что дает возможность отделять фосфор и мышьяк от германия. [c.349]

    В книге детально описаны основные методы микроэлемен-тарного и функционального анализа органических соединений, приведены методы определения углерода, водорода, азота, серы, галогенов, кремния, фосфора, германия, активного водорода, карбонильной группы, аминного азота, азота нитропарафинов, алкоксильной группы и воды. Описан способ взвешивания даны рекомендации по организации лабораторий микроанализа органических соединений. [c.688]

    О полярографическом поведении гетерополикислот молибдена. IV сообщ. К количественному определению кремния, германия, фосфора и мышьяка амперометрическим титрованием их молибдатокислот нитроном. [c.58]

    При определении фосфора с применением экстракции значительно уменьшается число мешающих ионов. В методе, разработанном Люком и Большем [128], которые впервые проводили экстракцию изобутиловым спиртом и затем восстанавливали молибдофосфорную кислоту хлоридом олова (П), было показано, что определению 0,6 ррт фосфора существенно мешают только мышьяк (V), церий(IV), германий(IV), золото(III), вольфрам (VI), ванадий (V), олово (II) и тиосульфат. Допустимо присутствие следующих ионов в концентрации вплоть до указанной в скобках (в ррт) As (60), I- (60), Hg> (20), Si v (30) и Sn v (40) и тиосульфат (60). [c.460]

    Описан метод последовательного определения фосфора и кремния в пламени оксид азота(1)—ацетилен [18]. Фосфорномолибденовую гетерополикислоту количественно экстрагировали изобутилацетатом, а после подкисления раствора кремний экстрагировали бутанолом. В каждом случае атомно-абсорбционным методом определяли молибден. Можно определять 0,08—1,0 рргп фосфора. За счет экстракции метод очень селективен. Мышьяк(V) и германий (IV) не мешают определению фосфора, но влияют на определение кремния, завышая результаты анализа 10-кратный избыток вольфрама не мешает определению фосфора, а 100-кратный — уже мешает. [c.467]

    Титан(1У) и цирконий(1 ) ухудшают отделение фосфора. Германий не влияет на определение фосфора или мышьяка, но мешает опреде.теш5Ю кремния. [c.468]

    Разработаны методы определения фосфора в углях и коксе [95, 96], в почве [97] и других материалах [98] с применением в качестве восстановителя сульфита или смеси сульфита и аминонафтол-сульфокислоты [97]. С целью определения фосфора в биологических материалах в качестве восстановителя применяют метол [99], а в метилтрихлорсилане — гидразин [100]. В последнем случае кремний отгоняют в виде тетрафторида, а мышьяк в виде As b. Мягким восстановителем является тиомочевина [101], которая рекомендована при определении фосфора в присутствии вольфрама, титана и ниобия [102]. Как отмечалось выше, лучшим восстановителем является аскорбиновая кислота [103, 104]. В качестве катализатора в этом случае рекомендовано применять антимонилтартрат калия [105]. Применение аскорбиновой кислоты рекомендовано при определении до 10 % фосфора в четыреххлористом германии [106]. Германий предварительно отделяют экстракцией четыреххлористым углеродом. [c.108]

    Определение после выделения германия в виде германомолибдата органического основ а-н и я, аналогичное определению фосфора после осаждения последнего в виде фосфоромолибдата аммония. В качестве осадителей предложены пиридин и хинолин. Осадок германомолибдата после промывания растворяют в 0,1 едком натре, избыток которого оттитровывают соляной кислотой при смешанном индикаторе — крезолкрасный и тимолсиний [47]. [c.405]

    Определепию фосфора методом фосфорномолибденовой сини мешают прежде всего мышьяк(У), кремний и германий, также образующие с молибденом гетероноликислоты, восстанавливающиеся до соответствующих синей. Мышьяк(У) после восстановления сульфидом или тиомочевиной до А8(1И) не мешает. Ионы легко гидролизующихся элементов (КЬ, Та, Т1, Ъп, Зп , Ш, В ) при осаждении их гидроокисей захватывают фосфаты. При получении фосфорномолибденовой сини титан и цирконий катализируют восстановление молибдата [26[. В присутствии ванадия(У) образуется фосфорнованадие-во.молибденовая кислота. При определении фосфора в присутствии больших количеств ванадия(У) его восстанавливают солью Мора до ванадия(У1), после чего добавляют молибдат, экстрагируют фосфорномолибденовую кислоту и в экстракте восстанавливают ее до фосфорномолибденовой сини [32]. [c.428]

    Гетерополикислоты молибдена, образующиеся в кислом растворе при реакции молибдата с фосфатами, арсенатами, силикатами и германатами, могут служить основой чувствительных методов определения соответствующих элементов Гетерополикислоты фосфора германия и кремния могут быть использованы непосредственно они дают умеренно окрашенные в желтый цвет растворы и могут экстрагироваться некоторыми кислородсодержащими растворителями типа изобутанола. Известно, что гетерополикислоты молибдена восстанавливаются легче, чем сама молибденовая кислота, поэтому можно определять фосфаты, силикаты, арсенаты, германаты обработкой этих ионов в кислом растворе молибдатом аммония и подходящим восстановителем. При соответствующих условиях восстанавливается до низшей валентности, давая интенсивно окрашенную гетерополикислотную синь , лишь молибден, связанный с вышеупомянутыми ионами. [c.124]

    Другая важная проблема — разработка методов обнаружения и определения микроколичеств элементов. Физические и химические свойства материалов часто зависят от присутствия именно микрокомпонен-тов. Титан и хром долгое время считали хрупкими металлами, которые нельзя ковать и прокатывать, однако недавно было установлено, что эти металлы в очищенном состоянии пластичны и что их хрупкость обусловлена незначительными примесями посторонних элементов. Германий является одним из основных материалов для изготовления полупроводниковых приборов в радиотехнической промышленности, однако он утрачивает свои полупроводниковые свойства, если на десять миллионов атомов германия приходится более одного атома фосфора, мышьяка или сурьмы. Самая незначительная примесь гафния в металлическом цирконии делает последний непригодным для использования в атомной промышленности. Ничтожные примеси титана, ванадия, висмута и некоторых других металлов в сталях значительно изменяют их механические и электрические свойства. Почти все элементы периодической системы входят в очень небольших количествах в состав тканей растений и живых организмов, причем каждый элемент играет впол- [c.16]


Смотреть страницы где упоминается термин Определение фосфора германии: [c.149]    [c.150]    [c.131]    [c.155]    [c.156]    [c.142]    [c.149]    [c.155]    [c.21]    [c.544]   
Аналитическая химия фосфора (1974) -- [ c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Германий определение

Определение в фосфорите



© 2025 chem21.info Реклама на сайте