Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реагент экстракционный

    Условная константа равновесия по форме напоминает концентрационную константу равновесия, однако она зависит от условий — от целого ряда параметров, таких, как температура, концентрации реагентов, ионная сила раствора, концентрации других веществ, присутствующих н растворе, pH раствора и т. д., тогда как истинная термодинамическая константа равновесия зависит только от температуры. Тем не менее, использование условной константы равновесия в практических расчетах бывает полезным, например, при описании экстракционных и кислотно-основных равновесий, процессов комплексообразования и в других слу (аях. [c.76]


    В настоящее время известен ряд классификаций экстракционных процессов, в основу которых положены разные признаки экстракционных систем взаимодействие экстрагируемого вещества с органическим растворителем, характер диссоциации вещества в водной и органической фазах, состояние вещества в водном растворе. Экстракционные процессы классифицируют по типу используемого реагента 1) экстракция нейтральными реагентами (растворителями), 2) экстракция реагентами кислотного характера, 3) экстракция реагентами основного характера по типу соединений, переходящих в органическую фазу 1) несольватированные молекулярные соединения, 2) сольватированные нейтральные смешанные комплексы, 3) комплексные кислоты, 4) внешнесферные комплексы. Состав соединения в органической фазе будет зависеть от природы экстрагируемого вещества. [c.427]

    Экстракционные методы, когда используется способность загрязняющих веществ растворяться в реагенте, не растворяющемся в воде удаляя реагент, вместе -е-ним извлекают и загрязняющее вещество. Например, для удаления фенола промстоки смешивают с бутил-ацетатом, который активно экстрагирует фенол. Этим методом экстрагирования можно снизить содержание фенола в воде с 2—5 г/л до 100 мг/л, или в 20—50 раз. [c.263]

    В большинстве случаев жидкостная экстракция осложняется химической реакцией. В этом случае целевое веш,ество исходного раствора первоначально вступает в химическую реакцию с компонентами экстрагента, а затем продукты реакции растворяются в экстрагенте. Для улучшения физических (плотность, вязкость) и (или) экстракционных (избирательность) свойств экстрагента экстракционный реагент растворяют в инертном растворителе. Под инертностью растворителя понимается неспособность образовывать химические соединения с извлекаемым веш,еством. Примером подобного процесса может служить экстракция щелочью меркаптанов из газоконденсата. Здесь экстрагентом является водный раствор щелочи, экстракционным реагентом — щелочь, вступающая в химическое взаимодействие с меркаптанами, инертным растворителем — вода. [c.98]

    Если использовать рециркулирующие фракции бензина гидроформинга, то можно получить практически чистый толуол фракционной перегонкой, так как в исходных фракциях нет компонентов, способных образовывать азеотропы. Азеотропную перегонку (обычно с метилэтилкетоном) успешно применяют для сырья, содержащего большое количество (около 70. о) бензола или толуола с целью уменьшения расходов реагента и пара, экстракционную перегонку — когда сырье содержит 30—50% ароматических углеводородов. [c.59]


    VI-16. Промышленная установка для гидролиза вещества А, которое поступает в виде смеси, содержащей 0,6 кмоль/м основного компонента, вырабатывает продукт R в количестве 5- 10 кмоль/сек. Теоретически реакция является бимолекулярной, однако вследствие большого избытка воды в реакционной смеси ее можно рассматривать как реакцию первого порядка, т. е. считать, что А 2R. После выхода из реактора смесь подают в противоточную экстракционную колонну, в которой выделяют продукт R. Степень превращения вещества А в системе достигает 98%. Постоянные и переменные затраты в этом процессе равны 3-10" руб/сек стоимость исходного реагента составляет 1 руб/кмоль-, продукт можно реализовать по цене 660 руб/кмоль. Предполагается, что производство работает не в оптимальных условиях и требуется провести его исследование с целью оптимизации. [c.160]

    Экстракционная схеиа анализа В таблице дана схема последовательного экстрагирования содержащего тот или другой реагент. ИОНОВ из водного раствора, [c.32]

    Процесс duo-sol наиболее универсален, так как позволяет производить очистку даже наиболее смолистых концентратов, для каких целей он главным образом и применяется. Недостаток этого метода заключается в том, что он требует повышенных давлений и большого расхода реагента, а установка очень сложна как в экстракционной, так и в регенерационной части. [c.399]

    Теоретическое пояснение. Экстракционно-фотометрический метод заключается в подборе соответствующего реагента-красителя, который переводит определяемое вещество в окрашенное, в экстрагировании этого соединения подходящим органическим растворителем и измерении интенсивности окраски полученного раствора. [c.137]

    В настоящее время известен ряд классификаций экстракционных процессов, в основу которых положены разные признаки экстракционных систем взаимодействие экстрагируемого вещества с органическим растворителем, характер диссоциации вещества в водной и органической фазах, состояние вещества в водном растворе. Экстракционные процессы классифицируют по типу используемого реагента  [c.427]

    Радиометрическое тнтрование экстракционным способом обычно осуществляется в пробирках с притертой пробкой. После добавления реагента и экстрагента, перемешивания и расслаивания фаз измеряют активность одной из фаз. [c.350]

    Редкие и обычные эле.менты разделяют осаждением с широким использованием различных органических реагентов и маскирующих веществ. Для этих же целей применяют также хроматографические, экстракционные и некоторые другие методы. Аналитическая химия РЭ подробно представлена в ряде фундаментальных руководств. В данную главу включены лишь несколько примеров физико-химических инструментальных методов определения важнейших РЭ. [c.368]

    Соэкстракция иодид-ионов наблюдается при извлечении перхлорат-ионов из кислых водных растворов нитробензолом в присутствии экстракционного реагента 2,2 -дипиридила при отсутствии перхлорат-ионов в этих условиях иодид-ионы не экстрагируются. [c.255]

    Экстракционный метод разделения смесей РЗЭ, так же как и ионообменный, основан на том, что комплексы различных РЗЭ с органическими лигандами диссоциируют в неодинаковой степени. Как правило, при экстракции органическая фаза, содержащая комплексообразующий реагент, удерживает РЗЭ, комплексы которых более прочны, а водная фаза обогащается теми РЗЭ, которые проявляют более слабые комплексообразующие свойства. [c.79]

    Константа экстракции Л ,кс. Константа экстракции — это константа гетерогенного химического равновесия, устанавливающегося при экстракции. Так, например, при экстракции из водных растворов катиона металла М" с помощью экстракционного реагента — кислоты ПА на границе раздела фаз протекает гетерогенная реакция [c.249]

    Химический состав экстрагируемых веществ. Химический состав соединения, в форме которого экстрагируемый компонент извлекается из водной фазы в органическую, зависит от природы этого компонента, экстрагента, экстракционного реагента, pH среды, присутствующих в растворе веществ. При экстракции соединений металлов их часто извлекают из водной фазы в форме различных комплексных соединений. Определить однозначно состав и строение этих комплексов, как правило, бывает затруднительно. [c.250]

    Экстракционное разделение РЗЭ можно проводить и другими нейтральными фосфорсодержащими реагентами. Природа заместителей в эфирах фосфорной кислоты существенно влияет на экстракционную способность реагента. Экстракционные свойства диизоамилметилфосс ю-ната (ДАМФ) значительно выше, чем ТБФ. При экстракции РЗЭ цериевой подгруппы с помощью ДАМФ органическая фаза насыщается при более низких равновесных концентрациях в водной фазе, чем в случае применения ТБФ. Это дает возможность использовать более низкую концентрацию высаливателя [125]. [c.132]

    Как установлено Уивером [238], введение в водные растворы соединений циркония приводит к значительному увеличению экстракции катионов металлов растворами Д2ЭГФК, что было объяснено соэкстракцией. Г. А. Ягодин с сотр. [239, 240] показали, что подобное явление наблюдается и при предварительной обработке различных фосфорорганических кислот соединениями гафния. Методами полярографии и спектроскопии показано, что степень диссоциации координированных молекул кислоты в комплексах 2г(Н )Н4-2НН увеличивается. Следовательно, насыщение растворов фосфорорганических кислот цирконием или гафнием приводит к получению нового реагента, экстракционная способность которого по отношению к различным элементам значительно выше, чем у исходной кислоты. Следует указать, что кислые диалкил- д фосфаты циркония устойчивы в циклах экстракции и реэкстракции и не меняют своих экстракционных характеристик. [c.135]


    Когда комплексное соединение отличается малой прочностью, для сдвига равновесия в сторону более полного образования комплексного соединения применяют достаточный избыток реагента, а также используют органические растворители (спирт, ацетон) или (если это возможно) экстракцию органическим растворителем, не смешивающимся с водой (экстракционно-фотометрический метоц). При этом следует учитывать также поглощение реагента, перешедшего в органическую фазу. [c.481]

    Следует отметить, что классификационные границы между некоторыми сов-> ещенными процессами носят довольно условный характер. Так, не всегда четки границы между реакционно-ректификационными, реакционно-сорбционными и реакционно-экстракционными процессами. Можно рассматривать действие некоторых реагентов на процесс разделения в реакционно-ректификационном процессе как сорбентов в сорбционно-отгонном процессе или как экстрагентов в экстрактивной ректификации. В этом случае можно руководствоваться сложившейся терминологией для соответствующих массообменных процессов. [c.187]

    В этом процессе фосфорная кислота служит не только реагентом, заменяющим серную кислоту, но и носителем питательного элемента — фосфора, чем объясняется высокая концентрация Р2О5 в двойном суперфосфате по сравнению с простым. В СССР получили применение камерный, камерно-ио-точный, бескамерный нли поточный и ретурный способы производства двойного суперфосфата. Схема камерного способа не отличается от непрерывной схемы производства простого суперфосфата. Фосфат разлагается концентрированной (экстракционной упаренной или термической) фосфорной кислотой. Ка- [c.241]

    Метод диссоциативной экстракции может успешно применяться для разделения целого класса органических соединений, сходных по своим физико-химическим свойствам и поэтому трудно разделимых обычными методами [1—3]. Диссоциативная экстракция может быть отнесена к экстракционным системам типа неэлектролит—электролит, но в отличие от других систем подобного класса экстрагент должен быть в стехиометрическом дефиците по отношению к общему содержанию компонентов, поскольку именно при таком условии в наибольшей степени будут проявляться его селективные свойства. При этом химическая реакция для конкурирующих реагентов является определяюпщм фактором процесса диссоциативной экстракции. Она создает основу для полного разделения смесей, которого нельзя достигнуть такими традиционными методами, как фракционная дистилляция, экстракция органическими или водными растворителями, кристаллизация и т. п. [c.79]

    Переработка жидкой реакционной массы состоит в очистке от растворенного НС1 и в выделении продуктов. Для очистки от H l применяют несколько способов (рис. 38). При по-лy eнии малолетучих веществ (хлорпарафины, хлористый бензил, гексахлоран, хлорксилолы) отдувают H l в колонне азотом или вогдухом (рис. 38, а). В остальных случаях часто применяли промывку жидкости в экстракционных колоннах водой, водной ще-ло1ью и снова водой при протнвоточном движении фаз (рис. 38, б). Это приводило к образованию значительного количества сточных во/. На более современных установках отгоняют НС1 вместе с изСыточным исходным реагентом в ректификационной колонне (р1 с. 38, а) с последующей конденсацией жидкости, ее возвращением на реакцию и выводом H l в линию отходящего газа. Схемы исключающие промывку, являются самыми прогрессивными. [c.116]

    Косвенное экстракционно-пламеннофотометрическое определение кадмия основано на экстракции МИБК соли щелочного металла иодидкадмиевой кислоты, распылении экстракта в низкотемпературное пламя и фотометрировании излучения щелочного металла. В качестве комплексообразующего реагента при определении кадмия используют иодид лития, имеющий низкую собственную растворимость в органической фазе данной экстракционной системы и, хотя его концентрация в водной фазе велика влиянием реагента на аналитический сигнал при определении микрограммовых концентраций кадмия можно пренебречь. Кроме того интерференционные фильтры пламенных фотометров имеют высокие факторы специфичности на литий. Интенсивность излучения щелочного металла линейно пропорциональна концентрации кадмия в водной фазе. Градуировочный график строят в координатах показания прибора — концентрация кадмия в стандартных растворах. Предел обнаружения кадмия 1 мкг/мл. Воспроизводимость 3% (отн.). [c.46]

    Для очистки и вьщеления Ри также применяют в основном экстракционные методьг Больщинство из них базируется на различиях в растворимости нитратов в органических растворителях. Нитраты Ри хорошо извлекаются спиртами, эфирами, кетонами и кислородсодержащими фосфорорганическими соединениями. В частности, практически полностью плутоний извлекается трибутилфосфатом. Варьгфуя условия экстракции, его можно отделить от большей часги элементов, экстрагируемых этим реагентом. Измерение активности препарагов Ри проводят на многоканальных (х-спектрометрах в диапазоне энергий 4800-5700 кэВ по площадям пиков полного поглощения а-частиц с энергиями 5450 ( Ри) и 5150 (" "Ри) кэВ. [c.310]

    Синтезированный ранее фениламино-4-антипирилметан проявлял свойства аналитического экстракционного реагента. С целью повышения специфичности ввели в фениламинорадикал карбоксильную группу, получив соединения 1,2 [c.86]

    Экстракция разнолигандных комплексов — одно из наиболее интенсивно развивающихся направлений в аналитической химии, при этом разнолигандные комплексы используют для прямого определения не только ионов металлов-комплексообра-зователей, но и анионов-реагентов (лигандов). Разнообразие лигандов при образовании смешанных экстрагирующихся комплексов значительно расширяет возможности в повышении чувствительности и избирательности экстракционно-фотометрических методов анализа. [c.201]

    При определении микропримесей ионов никеля N1 в водных растворах экстракционно-фотометрическим методом с применением реакции ионов N1 с органическим реагентом — салицилальальдоксимом предельное разбавление раствора по ионам равно ,25-10 мл/г. Определите и молярную концентрацию предельно разбавлишою раствора. Ответ 1,610 г/мл 2,7-10 моль/л. [c.31]

    В общем случае значение а — это характеристика сорбционной способности активного центра данного фермента. Если а <С 1 (как, например, в рассмотренном катализе (3-галактозидазой), то субстратная группа К, по-видимому, либо погружаетгя (переносится из воды) в органическую среду белка не полностью, либо связывание ее требует термодинамически невыгодных затрат на конформационное изменение структуры того или другого реагента. Гидрофобное ферментсубстрат-ное взаимодействие может быть термодинамически более выгодным, чем это предполагает простая экстракционная модель (где а= 1). В этом случае активный центр должен содержать локальный участок с относительно невыгодной поверхностной энергией пограничного слоя белок — растворитель например, с гидрофобными боковыми группами [c.44]

    Использование экстракционно-фотометрического метода позволяет устранить влияние постороннпх элементов, а также избытка реагента подбором таких условий (pH, растворителя, концентрации реагента), когда экстрагируется только комплекс определяемого элемента. Влияние посторонних комплексов и реагента устраняется также реэкстракцией их в водную фазу. Например, удаление из органической фазы некоторого избытка диоксинов, используемых для определения малых количеств никеля. [c.39]

    Поэтому при выборе, условий ироьоденпл ф014.) 1ег[)ических ре<1к-ций необходимо учитывать область поглоще 1ия анионсв, рекомендуя использование тех или иных вспомогательных реагентов (кислот, и е-лочей, компонентов буферных растворов). При применении экстракционно-спектрофотометрического метода для исследования процессов комплексообразования, разделения и определения многих элементов используются различные органические растворители. При выборе растворителей нужно учитывать их прозрачность в определенных участках спектра (табл. 5). [c.39]

    При определении микропримесей ионов алюминия в водных растворах высокочувствительным экстракционно-фо гометрическим методом с использованием реакции ионов А1 с органическим реагентом — кукфероном минимальная концентрация ионов алюминия сосяавляет 0,4 мкг/мл. Рассчитайте сцц, и К ц для ионов алюминия. Ответ 4-10 г/мл 2,5-10 мл/г. [c.31]

    Экстракция относится к наиболее эффективным методам разделения веществ. Экстракщюнные методы используют при извлечении различных компонентов из растительного и минерального сырья, для выделения газов из металлов и сплавов при высоких температурах, для отделения одних компонентов раствора от других и т. д. Описаны случаи экстракции расплавами солей или металлов из расплавов. Экстракционные методы на практике использовались издавна. Так, еще несколько столетий назад некоторые препараты, парфюмерные вещества, красители готовили по методикам, в которых применялась экстракция. В 1825 г. была описана экстракция брома бензолом, в 1842 г. — экстракция урана из растворов азотной кислоты, в 1867 г. — предложено использование различий в экстрагируемости кобальта, железа, платиновых металлов из тиоцианатных растворов для их разделения. В 1892 г. описана экстракция хлорида железа(1П), в 1924 г. — хлорида галлия(1П). В 20-е годы показана возможность использования органических хелатообразующих реагентов (в частности, дитизона) для экстракционного извлечения металлов в виде комплексных соединений. [c.240]

    Экстракционный реагент — составная часть экстрагента, взаимодействующая с извлекаемым веществом с образованием экстрагирующегося соединения. В приведенном выше примере экстракции ионов алюминия хлороформным раствором 8-оксихинолина роль экстракционного реагента играет 8-оксихинолин. [c.242]

    Координационно-сольватированные комтексы — координационные соединения металлов со смешанной внутренней сферой, включающей неорганический лиганд и нейтральный экстракционный реагент. К этой фуппе экстрагируемых веществ относятся, нащ)имер, такие комплексы, как и02(К0з)2(ТБФ)2, 8сС1з(ТБФ)5 и т. п., где ТБФ — молекула трибутилфосфата (С4Н70)зР0. [c.257]

    Реакция с дитизоном (дифенилтиокарбазоном). При смешивании хлороформного раствора дитизона (экстракционный реагент) с водным щелочным раствором, содержащим катионы Zn , образуется дитизонатный комплекс цинка красного цвета, экстрагирующийся из водной фазы в органическую. Хлороформный слой принимает более интенсивную красную окраску, чем водный. [c.373]


Смотреть страницы где упоминается термин Реагент экстракционный: [c.200]    [c.133]    [c.200]    [c.483]    [c.36]    [c.382]    [c.6]    [c.4]    [c.2]    [c.42]    [c.72]   
Аналитическая химия. Т.1 (2001) -- [ c.242 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимосвязь между строением и экстракционной способностью реагентов

Влияние носителя на термодинамическую активность экстракционного реагента и экстрагируемого соединения

Комплексообразование с реагенто изучение экстракционным методом

Концентрация экстракционного реагента

Распределение экстракционного реагента

Расчет экстракционного реагента

Реагенты органические экстракционные

Экстракционное отделение стронция от бария с использованием реагента азо-азокси ФМП. А. А. Надежда, Ф. П. Горбенко, Дунаевская, Л. А. Костринская

Экстракционные методы отделения плутония реагентами

Экстракционный реагент, определение



© 2025 chem21.info Реклама на сайте