Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация солей в неводных растворителях

    Кислотно-основное титрование (иногда называется также методом нейтрализации). В качестве рабочих титрованных растворов (реактивов) применяют обычно кислоты и щелочи. Определять этим методом можно кислоты, щелочи, соли слабых кислот и соли слабых оснований, а иногда также вещества, которые реагируют с такими солями. Если в растворе содержится несколько компонентов, имеющих различные кислотно-основные свойства, нередко возможно раздельное определение таких компонентов в их смеси. Применение неводных растворителей (спирт, ацетон и т. п.), в которых степень диссоциации кислот и оснований сильно изменяется, позволяет расширить число веществ, которые можно определять титрованием кислотами или основаниями. -% [c.272]


    Реакция нейтрализации протекает не только в водных, но и в неводных растворах. Химическая природа неводного растворителя влияет на состояние ионов в растворе и на степень диссоциации. Одно и то же вещество может быть в одном растворителе солью, в другом кислотой, в третьем основанием. Например, ацетат аммония в воде — соль, в аммиаке — кислота, в уксусной кислоте — основание. Хлорид аммония в воде вследствие гидролиза является слабой кислотой (и солью), в жидкой фтористоводородной кислоте — основанием, в жидком аммиаке — сильной кислотой. Амид калия в уксусной кислоте — слабое основание, в воде — сильное основание, в жидком аммиаке — очень сильное основание. Амид калия в жидком аммиаке — более сильное основание, чем гидроокись калия в воде. [c.444]

    Каков порядок величины теплот гидратации Его можно оценить из рассмотрения теплот растворения электролитов. Обозначим через q теплоту растворения соли. При растворении соли энергия затрачивается на разрушение кристаллической решетки (i/p) и выигрывается вследствие гидратации катионов (H .) и анионов (Н ), так что q = —Up + + Н . Из того факта, что величины q невелики (порядка 10 ккал) по сравнению с t/p (порядка 10 ккал), можно сделать вывод, что энергия гидратации близка к энергии решетки. Интересно, что соединения, являющиеся сильными электролитами в водных растворах, в неводных растворителях с низкой диэлектрической постоянной имеют малую степень диссоциации даже при высоких разбавлениях. Изучение свойств неводных растворов электролитов дало много для понимания механизма их диссоциации. Пионерами в этой области были И. А. Каблуков, А. И. Саханов. [c.148]

    Дальнейшее развитие химии и использование неводных растворителей привело к необходимости объяснить процессы, протекающие в этих растворителях. Например, хлорид аммония, ведущий себя как соль в водном растворе, при растворении в жидком аммиаке проявляет свойства кислоты, растворяя металлы с выделением водорода. Мочевина С0(КНг)2, растворяясь в безводной уксусной кислоте, проявляет свойства основания, в жидком аммиаке — свойства кислоты, а ее водные растворы нейтральны. Все эти факты нельзя было объяснить на основании теории электролитической диссоциации Аррениуса. В связи с этим определение кислот и оснований были пересмотрены. [c.75]


    Протоны, как и электроны, только переходят от одних частиц к другим, но не существуют в свободном состоянии в водных и неводных растворах. Протолитическая теория аналогична электронной теории окислительно-восстановительных процессов, по которой электроны переходят от частиц восстановителя к частицам окислителя окислитель и восстановитель всегда образуют сопряженные пары. Окисление одного вещества вызывает восстановление другого ( 31). Кислота, основание,соль и растворитель тесно связаны между собой. Кислота при диссоциации образует катион, характерный для растворителя, основание образует анион, характерный для растворителя. Например, в жидкой двуокиси серы образуются катион сероокиси 50"и сульфит-ион  [c.56]

    Соли лития занимают во многих отношениях особое положение среди других солей щелочных металлов. Кроме того что некоторые из них трудно растворимы В воде (что было отмечено), различные литиевые соли обнаруживают сравнительно большую растворимость в неводных растворителях. В этих неводных растворителях они в основном сильно диссоциированы на ионы. Понижение температуры замерзания и повышение температуры кипения водных растворов литиевых солей нередко превышают теоретические значения, вычисленные при предположении полной диссоциации. Это объясняется значительной гидратацией ионов лития, вследствие чего происходит заметное уменьшение количества воды, являющейся растворителем. [c.212]

    Применение неводных растворителей значительно расширило возможности кислотноосновного титрования. В неводных растворителях возможно титрование очень слабых (в воде) кислот и оснований, раздельное титрование смеси кислот, а также смеси оснований с близкими (в воде) константами диссоциации, титрование солей сильных кислот (оснований) по вытеснению. Неводные растворители позволяют расширить возможности титрования по методу осаждения, распространив его па ряд новых веществ за счет уменьшения растворимости осаждаемой соли в неводных растворах. Различное изменение силы солей позволяет осуществить раздельное титрование смеси солей с одним анионом по осаждению этого аниона. [c.440]

    Существенное влияние на константу диссоциации индикатора, его интервал перехода, область pH перехода, спектральные и другие свойства индикатора оказывают многие внешние факторы температура, присутствие нейтральных электролитов, неводных растворителей, коллоидов и т. д. Наличие в растворе индикатора так называемых посторонних нейтральных электролитов вызывает солевой эффект. Уравнение (2.11) показывает, что чем выше заряд ионизированных форм индикатора, (HInd + или Ind ), тем заметнее будет солевой эффект, вызывающий обычно уменьшение численного значения pKnind- т. е. увеличение концентрационной константы диссоциации индикатора, и, как следствие, смещение интервала перехода. У биполярных цвиттер-ионов этот эффект сравнительно невелик. Изменение окраски индикатора часто связывают со сдвигом равновесия диссоциации индикатора, хотя в действительности введение электролита увеличивает диссоциацию не только индикатора, но "и слабой кислоты, находящейся в растворе. Наличие нейтральных солей в растворе часто вызывает уменьшение интенсивности окраски индикатора. [c.59]

    Точно так же собственная диссоциация неводных растворителей вызывает сольволиз образующихся при титровании солей  [c.424]

    Опыт показывает, что при растворении в данном растворителе какого-нибудь вещества равновесное давление пара растворителя понижается. Количественную связь между понижением давления пара и составом раствора открыл в 1887 г. Ф. Рауль. В отличие от своих предшественников он исследовал не только растворы кислот, щелочей и солей, но также растворы органических соединений, применение которых позволило исключить из рассмотрения усложнение картины, вызываемое диссоциацией солей и кислот. В 1882 г. Рауль определил Тзам около 30 органических веществ в водных растворах. Он показал, что независимо от природы веществ растворение одного моля вещества в 1 кг растворителя (воды) приводит к понижению точки замерзания на одну и ту же величину (1,85°С). Затем Рауль заменил воду бензолом, в котором он растворял целый ряд органических соединений. Оказалось, что все они показывали в бензоле одинаковое молярное понижение Т зам рЗВ-ное 5,2 °С. От измерений точек замерзания Рауль перешел в 1886 г. к определениям давления паров неводных растворов. Это привело его к открытию эмпирического закона, который был впервые опубликован в 1887 г. в работе Об упругости пара эфирных растворов . [c.112]

    В связи с этим автором совместно с Е. И. Вайлем и рядом сотрудников были подсчитаны константы диссоциации солей, по данным Вальдена, во многих неводных растворителях по методу Фуосса и Крауса. Эти данные будут рассмотрены ниже. [c.229]


    Это связано с тем, что в неводных растворителях (ацетоне, метилэтилкетоне и т. д.) происходит значительная дифференциация констант диссоциации солей. [c.103]

    При рассмотрении поведения координационных соединений в растворах обычно предполагают, что растворителем является вода но некоторые координационные соединения растворяются в неводных растворителях, которые в последнее время стали широко применять. В этих растворителях ионы металла окружены молекулами растворителя, и реакция комплексообразования заключается в замене молекул растворителя другими лигандами. По существу, равновесие в неводных растворителях аналогично равновесию в водных растворах. Ограниченная растворимость ионов в большинстве неводных растворителей, трудности, связанные с недостаточной диссоциацией солей (спаривание ионов) в них, и удобство водных систем приводят к тому, что большинство исследований равновесий проводят в водных средах. Ниже будут рассмотрены равновесия в водной среде кроме того, с некоторыми изменениями аналогичная трактовка будет применена к другим растворителям. [c.131]

    Из выведенных формул следует, что концентрация ионов водорода в буферных растворах зависит не только от концентрации самой кислоты и значения ее константы электролитической диссоциации, но и от концентрации ее соли, которая в среде неводных растворителей может выпасть в осадок, а также может находиться в форме ионной пары или в недиссоциированном состоянии. [c.184]

    Метод принципиально не отличается от титриметрического анализа водных растворов, однако обладает некогорыми существенными преимуществами. Так, возможность широко варьировать свойства применяемых растворителей позволяет подбирать их так, чтобы значения тех или иных физико-химических характеристик компонентов пробы (например, их констант диссоциации), близкие-в водных растворах, заметно различались бы в соответствующем неводном растворителе. Удачный выбор растворителя, обладающего подобным дифференцирующим действием, позволяет раздельно титровать кис-, лоты, основания и соли в составе их сложных смесей. Кроме того, в неводных средах можно определять содержание веществ, нерастворимых в воде, разлагающихся ею или образующих в водных растворах, стойкие нерасслаивающиеся эмульсии. Неводное титрование особенно эффективно для определения органических соедйнёний различных классов. [c.342]

    Типы химических соединений и ионов, на которые они распадаются в различных условиях электролитической диссоциации в зависимости от применяемых растворителей, имеют большое значение для современной аналитической химии. На этом основаны методы распределительной хроматографии, ионного обмена в неводных растворителях, экстракционного анализа, неводного титрования, адсорбционного анализа и др. Растворимость различных солей, кислот и оснований в воде, константы их диссоциации, константы нестойкости, окислительно-восстановительные потенциалы, потенциалы ионизации атомов химических элементов — все эти свойства тесно связаны с положением соответствующих химических элементов в периодической системе. [c.16]

    В неводных растворителях на сольволиз солей, кроме констант диссощ1а-ции кислот и оснований, образующих соль, оказывает влияние автопротолиз растворителя. В некоторых неводных и смешанных растворителях соли диссоциируют полностью, в других ассоциированы в заметной степени. При определенных соотношениях констант диссоциации электролитов, образующих соль, в зависимости от ее концентрации неполная диссоциация солей оказывает влияние на pH растворов. [c.23]

    Благодаря полярности молекул и достаточно высокой диэлектрической проницаемости жидкий аммиак является хорошим неводным растворителем. Жидкий аммиак положил начало химии неводных растворов. Результаты исследования поведения веществ в жидком аммиаке дали возможность построить обобщенную теорию кислот и оснований, открыли перед химией новые пути проведения реакций синтеза ранее неизвестных веществ и т. д. В жидком аммиаке хорошо растворяются щелочные и щелочно-земельные металлы, сера, фосфор, иод, многие соли и кислоты. Вещества с функциональными полярными группами в жидком аммиаке подверга-]отся электролитической диссоциации. Однако собственная ионизация аммиака 2ЫНа(ж) ЫН - -ЫН2 ничтожно мала и ионное произведение [NHi] lNH.r]= 10 - при —50 °С. [c.249]

    Как показали наши исследования силы кислот в неводных растворителях, особенно в ацетоне, дифференцирующее действие растворителей на силу кислот 1не исчерпывается только дифференцированием силы сильных кислот в растворителях с малой основностью. Такие растворители, как ацетон метилэтилкетон, галоидауглеводороды и даже пиридин резко уси-, швают различие между собой слабых и сильных кислот. Это изменение в соотношении силы сильных и слабых кислот было установлено нами несколькими методами потенциометрическим титрованием сильных и слабых кислот в их смесях, титрованием солей по вытеснению и, наконец, исследованием констант диссоциации сильных и слабых кислот. При этом было установлено, что соотношение в их силе изменяется в десятки и сотни тысяч раз. Наряду с изменением соотношения в силе сильных и слабых кислот нами было установлено, что эти рас-ТБорители изменяют соотношение в силе слабых кислот. Кислоты, одинаково сильные в воде, в ацетоне и в других раство-риГелях, не содержащих гидроксильных групп, отличаются в сотни и тысячи раз. Это было установлено при соиоставле-гши собственных и имеющихся в литературе данных о константах диссоциации в ряде растворителей. Следовательно [c.507]

    Наиболее широкое определение кислот и оснований, с этой точки зрения, сделали Кеди и Мак-Элсей кислота—вещество, при диссоциации которого выделяется катион, аналогичный катиону растворителя. Основание—вещество, при диссоциации которого выделяется анион, аналогичный аниону растворителя. Соль—вещество, электропроводность которого выше электропроводности растворителя при диссоциации соли образуются ионы, отличные от ионов растворителя. Это определение предусматривает как водные, так и неводные растворы, как водородсодержащие, так и не содержащие водорода системы. [c.297]

    Однако при этом необходимо иметь в впду, что прп переходе к неводным растворителям сила электролитов, в частности солей, падает, поэтому в этих растворителях изменение потенциала ДZ° будет определяться не только произведением растворимости, но и величинами констант диссоциации анализируеаюго продукта, реактива и продуктов реакции, п поэтому  [c.447]

    Предлагаемая вниманию читателя книга написана известным австрийским химиком Викторолг Гутманом. В качестве растворителей автор рассматривает лишь так называемые молекулярные жидкости расплавленные соли и металлы не упоминаются в этой работе. Следует отметить оригинальный подход к изложению проблемы — растворители рассматриваются главным образом с точки зрения координационной химии. Автор предлагает химическую классификацию неводных растворителей в зависимости от наличия у них донорных или акцепторных свойств и при этом подчеркивает специфику растворителей, содержащих способные к диссоциации протоны. Для количественной характеристики растворителей автор предлагает так называемое донорное число — взятую с обратным знаком величину энтальпии реакции присоединения даннох молекулы к пентахлориду сурьмы. Эта характеристика донорных молекул широко используется по всей книге. [c.5]

    В неводных растворах на сольволиз соли, кроме ее концентраци и констант диссоциации образующих ее электролитов, влияние оказывс ет константа диссоциации соли и автопротолиз растворителя. Расче осуществляют по полиному шестой степени [ 10]. Концентрации катио нов [ВН ] и анионов [Ап ] соли определяют из зависимостей, приве денных в работе [ 10]. Концентрации недиссоциированных молеку] электролитов, образующих соль, устанавливают из выражений  [c.10]

    Прогнозирование с помощью номограмм осуществляется на основе справочных данных по константам диссоциации взаимодействующих электролитов, а также их предполагаемых концентраций. В неводных растворителях, кроме того, учитывается неполная диссоциация титрантов и образующихся солей, изменение влияния их диссоциации с уменьшением концентрации, а также влияние автопротолиза растворителя. [c.29]

    При титровании кислот или оснований в неводных растворителях можно применять титранты различной силы. В результате реакции нейтрализации в растворителях с высокой диэлектрической проницаемостью, например, водно-органических и ряде других, образуются полностью диссоциирующие соли. Однако во многих растворителях соли ассоциированы в заметной степени. Скачки pH на кривых титрования зависят от констант диссоциации анализируемых веществ и титрантов, от ассоциации образующихся солей, от константы автопротолиза растворителя и от концентрации анализируемого вещества. [c.33]

    При титровании индивидуальных солей в неводных растворителях на условия титрования оказывают влияние константы диссоциации электролитов, образующих соль, ее концентрация и константа автопротолиза растворителя. В качестве титрантов могут быть использованы электролиты различной силы. Номограмма для прогнозирования возможности количественного потенциометрического титрования солей в неводных растворителях приведена на рис. 3.5. Она применима как при полной диссоциации солей, так и для случаев неполной диссохща-ции солей при условии равенства констант диссоциации титруемой и образующейся соли. Это условие соблюдается для большинства растворителей, так как в одном и том же растворителе константы диссоциации солей обычно мало различаются. [c.39]

    В неводных растворителях, в которых не проявляются процессы гомосопряжения, на рНуз кислот или оснований оказывает влияние как константа диссоциации анализируемого электролита, так и константа диссоциации титранта, константа автопротолиза растворителя, константа диссоциации образующейся соли (если эти соли ассоциированы в заметной степени), концентрация анализируемого электролита и ионная сила раствора. [c.54]

    Под влиянием неводных растворителей с различной величиной констант автопротолиза сила кислот, оснований и степень диссоциации солей изменяется в неодинаковой степени. Это дифферен-цируюш ее действие неводных растворителей используется для титрования смесей, раздельное определение компонентов которых в водной среде невозможно из-за гидролиза продуктов реакций. В основе такого действия лежат кислотно-основные или донор-ноакцепторные свойства растворителей и растворимых веществ. [c.157]

    Диссоциация фенолятов в полярных растворителях была обнаружена при исследовании их растворов различными методами [170, 171, 211—214]. Например, диссоциация 3,5-динптрофеполятов и пикратов щелочных металлов в растворах в ацетонт риле показана в работах [170, 171 [, причем пикрат калия диссоциирован в большей степени, чем салицилат. Диссоциация наблюдалась также при исследовании растворов фенолятов калия и лития в метаноле и диметилсульфоксиде методом ядерного магнитного резонанса протонов фенолят-иона [211[, при измерении электропроводности растворов пикратов натрия и калия в неводных растворителях [212], при изучении ультрафиолетовых спектров растворов щелочных солей некоторых фенолов в диметилформамиде [213]. Диссоциация пикрата лития в нитробензоле исследовалась в работе [258], в присутствии воды в нитробензольном растворе наблюдалось увеличение диссоциации. Апрано и Фуосс доказали [214], что в некоторых растворителях диссоциация пикратов сопровождается ассоциацией диполей растворителя (ацетонитрил, /г-нитроанилин) с пи-крат-иопом. [c.52]

    При химических взаимодействиях в растворах всегда образуются смеси электролитов и присутствуют различные ионы. Одни из них образуются в результате диссоциации сильных электролитов, другие — слабых электролитов. Некоторые ионы вступают в реакцию, при этом образуются новые малодиссоциированные соединения, малорастворимые осадки, комплексные соединения или продукты реакций окисления — восстановления. Таким образом, в процессе титрования растворы представляют собой сложные системы, в которых в ряде случаев имеется несколько химических равновесий, в том числе и автопротолиз растворителя. Концентрация ионов зависит от общего состояния системы в каждый момент титрования. Поскольку состояние системы определяется термодинамическими константами, характеризующими химические равновесия, эти величины могут служить критериями применимости методов. К ним относятся константы диссоциации кислот, оснований, амфолитов (в неводных растворах также константы диссоциации солей), константы автопротолиза растворителей, константы нестойкости комплексов, произведения активностей осадков, окислительновосстановительные потенциалы и т. д. Термодинамические величины характеризуют полноту протекания реакций, а следовательно, и значения равновесных концентраций ионов. Теоретические кривые титрования дают возможность устанавливать, при каких значениях указанных констант кривые кондуктометрического титрования имеют излом, позволяющий найти точку эквивалентности. При этом реакции не обязательно должны протекать практически до конца, так как смещение ионных равновесий происходит в продолжение всего процесса титрования. Поэтому в основу кондуктометрических определений могут быть положены реакции в какой-то мере обратимые, что недопустимо в ряде случаев при использовании классических химических методов и некоторых физико-химиче-ских методов анализа. [c.38]

    Потенциометрическим методом определения конечной точки титрования можно воспользоваться, чтобы подобрать подходящий индикатор для визуального титрования какой-либо конкретной основной функции в неводном растворителе. Потенциометрическое титрование обычно требуется и для одновременного определения нескольких основных веществ в растворе. Кенттамаа и Хейнонен вычисляли отношение констант диссоциации основания и его соли в уксусной кислоте по наклону кривой титрования основания в ледяной уксусной кислоте. [c.400]

    Равновесные концентрации ионов могут быть рассчитаны, если известна концентрация титруемого раствора, количество добавленного титранта и значения констант диссоциации. Когда в основу определения положено кислотно-основное взаимодействие, химические равновесия характеризуются константами диссоциации кислот, оснований, амфоли-тов, а в неводных растворах также константами диссоциации солей. Если в процессе титрования образуются малорастворимые осадки или комплексные ионы, состояние равновесий обусловливается значениями произведений растворимости осадков и констант нестойкости комплексов. При использовании реакций окисления — восстановления равновесия зависят от окислительно-восстановительных потенциалов и т. д. В ряде случаев существенное влияние в общей системе равновесий оказывает константа автопротолиза растворителя. [c.98]


Смотреть страницы где упоминается термин Диссоциация солей в неводных растворителях: [c.240]    [c.322]    [c.68]    [c.399]    [c.617]    [c.368]    [c.381]    [c.68]    [c.51]   
Справочник химика Том 3 Изд.2 (1965) -- [ c.116 ]

Справочник химика Том 3 Издание 2 (1964) -- [ c.116 ]




ПОИСК





Смотрите так же термины и статьи:

Диссоциация солей

Неводные растворители

Растворитель н диссоциация



© 2025 chem21.info Реклама на сайте