Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отщепление нуклеофильное

    Реакция нуклеофильного замещения атома галогена всегда осложняется тем, что с ней в большей или меньшей степени конкурирует реакция отщепления галогеноводорода. Как было рассмотрено выше, реактивы Гриньяра являются сильными основаниями, способными отщеплять протон от молекулы субстрата—алкилгалогенида. Поэтому наряду с реакцией нуклеофильного замещения SN2, проходящей через переходное состояние (9), протекает реакция элиминирования 2, для которой переходное состояние с более удлиненной цепью рассредоточения электронной плотности соответствует структуре (10). Не исключено также, что при реакции элиминирования реализуется шестичленное переходное состояние (11) [c.268]


    Гидролиз и щелочное дегидрохлорирование хлорированных соединений относятся к реакциям нуклеофильного замещения и отщепления. Реакция дегидрохлорирования основаниями — это реакция второго порядка. Реакции соответствует [c.32]

    При использовании таких агентов, как этоксид натрия, реакция нуклеофильного замещения практически не идет. Происходит преимущественно отщепление галогеноводорода (двухста-дийная реакция элиминирования 1). [c.129]

    Кроме рассмотренного выше механизма присоединения — отщепления нуклеофильное ароматическое замещение может осуществляться по двум другим механизмам  [c.423]

    Другой метод сннтеза И. с. основан на отщеплении нуклеофильной группы от геминальных производных альдегидов и кетонов (реакция, обратная взаимодействию П. с. с нуклеофильными реагентами)  [c.113]

    Мы здесь отвлекаемся от возможности, что в случае некоторых из этих заместителей начало процессу замещения могло бы положить отщепление нуклеофильным реагентом протона из боковой цепи. [c.546]

    Амид калия, будучи сильным основанием, отщепляет из а-положения бензольного кольца активированный атом водорода в виде протона, а из образовавшегося аниона вытесняется ион С1 и образуется чрезвычайно активная электронейтраль-ная частица — дегидробензол (91). Не исключено, что отщепление протона и хлорид-иона происходит синхронно. Дегидробензол мгновенно присоединяет нуклеофильный реагент, причем нуклеофил с равной вероятностью может образовать ковалентную связь с любым из двух связанных тройной связью атомов углерода. Реакция завершается отщеплением карбанионом протона от аммиака и регенерацией амид-иона  [c.407]

    Нами рассмотрены основные черты бимолекулярного нуклеофильного замещения. Существует иной механизм замещения, когда отщепление группы X и присоединение 2 совершаются не одновременно, а разделены во времени  [c.191]

    Видно, что эта реакция легко проходит только при стабилизации отрицательного заряда. Этим и вызвана необходимость присутствия нитрогруппы. Соединение, содержащее фтор, более реак-ционноспособно, чем соответствующий хлорированный аналог, что может показаться удивительным, поскольку хлор считается лучшей уходящей группой. Однако отщепление уходящей группы не скоростьлимитирующая стадия. Кроме того, благодаря более сильному индуктивному эффекту более электроотрицательный атом фтора обусловливает больщую стабилизацию промежуточного аниона, тем самым повышая электрофильность атома углерода, по которому идет нуклеофильная атака. [c.50]


    Неподеленная пара электронов, оставшаяся у карбаниона после отщепления протона, не фиксирована на атоме углерода. Она оттягивается к карбонильной группе, причем образуется обладающий высокой нуклеофильной реакционной способностью (стабилизированный рассредоточением избыточной электронной плотности) мезомерный анион (I), основность которого несколько ниже, чем карбаниона, и соизмерима с основностью иона "ОН. Большая часть избыточной электронной плотности в анионе (1) находится на атоме кислорода, но атом [c.184]

    На последней стадии реакции, по-видимому, происходит отщепление амидом натрия, являющимся сильнейшим основанием, протона из орго-положения бензольного кольца и последующая нуклеофильная атака атома углерода карбоксильной группы. [c.534]

    Механизм реакции нуклеофильного замещения галогена в ароматическом ряду имеет свои особенности. Возможно, что при действии сильных нуклеофильных реагентов происходит вначале отщепление галогеноводорода с образованием очень активного промежуточного продукта — дегидробензола (бензина), который сразу же реагирует с нуклеофильным реагентом  [c.291]

    Реакции типа 8м2, напротив, протекают с большой скоростью в апротонных растворителях с высоким донорным числом Длг и малым акцепторным числом Лдг. В данном случае не происходит отщепления аниона на лимитирующей стадии процесса (образовании активированного комплекса). Исследования кинетики процесса показывают, что константы скорости в апротонных растворителях, как правило, в 10 раз больше, чем в протонных. Это объясняется тем, что присоединяющийся анион (нуклеофильная частица) находится в исключительно реакционноспособном состоянии ввиду отсутствия сольватной оболочки. [c.453]

    Помимо реакций нуклеофильного замещения возможны реакции, в которых от молекулы органического соединения отщепляются, также говорят элиминируют, атомы или группы атомов. Такие реакции называются реакциями отщеплении или элиминирования. При этом в исходной молекуле образуются новые о- и Л-связи. Отщепляющиеся фрагменты называются уходящими группами. [c.230]

    Наиболее характерные реакции алкилгалогенидов относятся к типам нуклеофильного замещения или отщепления. [c.74]

    При гетерогенном катализе в качестве катализаторов чаще всего исполь-.зуются смеси твердых веществ, каждое из которых играет определенную роль в стадиях каталитического процесса. Нескомпенсироваиное потенциальное поле и большое число дефектов кристаллической структуры приводят к тому, что на поверхности возникают особые активные центры адсорбции, а также донорные и акцепторные участки (центры), на которых происходит присоеди-ление или отщепление нуклеофильных и электрофильных частиц, протонов и -электронов. Чаще всего используемый в настоящее время катализатор синтеза аммиака имеет состав Ре/КаО/АЬОз. Первой стадией реакции синтеза -аммиака является адсорбция N3 на (1,1,1)-поверхности кубической объемно-центрированной решетки железа. На поверхности катализатора происходит также расщепление Нг на атомы. Адсорбированная и активированная молеку--ла N2 постепенно гидрируется атомарным водородом до промежуточного образования ЫаНб. При последующем присоединении атома водорода связь разрывается и образуется молекула аммиака ЫНз. Другие компоненты катализатора оказывают активирующее и стабилизирующее воздействие на отдельные стадии этого химического процесса. [c.436]

    Группы, находящиеся в аксиальном и экваториальном положениях пятивалентного промежуточного соединения, существенно различаются по своей химической реакционноспособности [62]. В частности, отщепление нуклеофильной группы с образованием тетраэдрического фосфата происходит гораздо легче, если она находится в аксиальном, а не в экваториальном положении. Вновь вернемся к рибонуклеазе. В урав--нении (7-19) показано, что в промежуточном пятиковалентном соединении, образующемся, когда 2 -гидроксильная группа атакует фосфор со стороны, противоположной положению 5 -кислорода второго нулеотид- ного звена, как атакующая, так и уходящая группы находятся в аксиальных положениях. Благодаря этому облегчается отщепление уходящей [c.122]

    Подобно протонным кислотам, кислоты Льюиса могут катализировать отщепление нуклеофильного заместИ ёйя Т бт реагента К—V, например, в реакциях Фриделя - Кр1 фгса, с образованием ионной пары. Процесс активации реагента упрощенно можно представить следующей схемой  [c.433]

    Единодушное мнение заключается в том, что существует широкий спектр механизмов, от предельных случаев, где первой уходит электрофильная группа (обычно за счет основного катализа), за которым следует отщепление нуклеофильной группы, до случаев, где сначала уходит нуклеофил, а затем — электрофил. Между крайними случаями лежат механизмы, в которых обе группы уходят синхронно или почти синхронно. При использовании ПМР предыдущее обсуждение показывает, что реакции почти синхронного элиминирования должны проходить как awmii-процесс. Предельные механизмы, в которых образуются свободные карбанионы или ионы карбония, должны давать продукты, определяемые устойчивостью ротамера или изомера. [c.372]


    Книга является руководством для углубленного изучения теоретических основ органической химии. Как и в предыдущем издании ( Мир , 1965 г.), в ней рассматриваются механизмы главных типов превращений органических веществ нуклеофильное замещение у насыщенного атома углерода, отщепление, нуклеофильные реакции полярных двойных связей, электро-фильное присоединение к олефйнам и ароматическим двойным связям, нуклеофильные перегруппировки у электронодефицитных атомов, некоторые радикальные реакции. Книгу отличает всесторонность и глубина подхода к рассматриваемым реакциям, ясность изложения, большой объем цитируемых оригинальных и обзорных работ. Все это ставит новое—переработанное и дополненное — издание в ряд ценных учебных пособий для студентов и аспирантов химических вузов. Ее с интересом и пользой прочтут также преподаватели и иссбхедователи, работающие в области органической химии. [c.4]

    Нуклеофильная концевая аминогруппа белка (остаток первой аминокислоты или белкового мономера, аминогруппы остальных аминокислот вовлечены в образование полимерной цепи, т. е. образуют ненуклеофильные амидные связи) замещает атом фтора по механизму присоединения — отщепления. Такая реакция протекает с образованием отрицательно заряженного промежуточного соединения. [c.50]

    Для галогенсодержащих соединений катализируемое ферментом отщепление НХ дает аминоакрилат шнффова основания. Во всех случаях активированные электрофилы атакуются нуклеофильными группами ферментов в активном центре или вблизи него. [c.454]

    Нуклеофильные реакции связаны с атакой центра молекулы, характеризующегося нехваткой, дифицитом электронов. Это может быть положительно заряженный атом, входящий в состав органического катиона. Но чаще речь идет о нуклеофильной атаке атома, лишь частично поляризованного, несущего некоторый избыточный положительный заряд б+. В результате нуклеофильной реакции могут произойти различные процессы замещение в молекуле, отщепление группы атомов, перегруппировка или присоединение. [c.187]

    Реакция этерификации представляет собой типичное кислотокатализируемое нуклеофильное замещение по ацильному углеродному атому и включает присоединение-отщепление протона  [c.107]

    Реакции нуклеофильного замещения часто сопровождаются отщеплением. При взаимодействии со щелочами галоидные алкилы образуют не только спирты, но и непредельные соединения. Последние возникают так н<е как побочный продукт действия минеральных кислот на спирты. Разложение четвертичных аммониевых оснований также дает в качестве побочного продукта замещенный этилен. Все это подтверждает предположение о существовании общего механизма замещения и отщепления. Реакция замещения обозначается символом Е (elimination)..Так же как и для нуклеофильного замещения, здесь возможны два механизма бимолекулярный ( 2) и мономолекулярный [c.200]

    Первая стадия нуклеофильного замещения атома галогена (промежуточное образование аниона) протекает медленнее второй стадии (отщепление аниона) и лимитирует скорость всего процесса. Действительно, 2,4-динитро-1-фторбензол реагирует с метоксидом натрия значительно быстрее, чем динитрохлорбензол. Если бы отрыв галогенид-иона от промежуточно образовавшегося комплекса на второй стадии определял скорость всего процесса, то динитрофторбеызол должен был бы быть менее реакционноспособным, поскольку энергия связи С—гораздо больше (450 кДж/моль), чем энергия связи С—С1 (275 кДж/моль), и, следовательно, вытеснение фторид-иона энергетически менее выгодно, чем вытеснение хлорид-иона. Более высокая реакционная способность динитрофторбензо-ла объясняется большим —/-эффектом фтора по сравнению с хлором. Поэтому на атакуемом нуклеофилом атоме бензольного кольца дефицит электронной плотности выше у динитро-фторбензола. Следовательно, отщепление галогенид-иона идет быстрее и на суммарную скорость всего процесса влиять не может. [c.403]

    В результате 6-связь С—X становится поляризованной. Именно пониженная электронная плотность на атоме углерода и определяет в отличие от предельных углеводородов высокую реакционную способность галогенопроизБодных, которые вступают в реакции нуклеофильного замещения (SN) и отщепления (Е). [c.93]

    Реакции отщепления (элиминирования ) Е). Очень часто на-рл ду с регкцией нуклеофильного замещения галогена параллельно протекает реакция дегидрогалогенирования с образованием олефина. При этом происходит отщепление двух атомов (или групп) из одного и того же вещества без замещения их на другие атомы. Например, при действии на галогеналкил спиртового раствора щелочи отщепляется галогеноводород с образованием непредельного соединения  [c.96]

    Как и реакции замещения, реакции отщепления могут протекать по различным механизмам. Так, процесс отщепления иногда начинается с атаки нуклеофильным реагентом (щелочью). При этом отделивщийся от молекулы галогено-пронзводного протон соединяется с реагентом, а отщепляющийся галоген уходит [c.96]

    У. Какле тяпы реакций характерны для гексахлорана Е1. Замещение радикальное б. Замещение нуклеофильное в. Замещение электрофильное г. Реакции отщепления [c.79]

    Параллельно с нуклеофильным замещением может происходить отщепление, результатом которого является образование я-связи1 [c.47]

    Нуклеофильное замещение, как правило, конкурирует с реакцией отщепления гидрогалогенида (HHal). [c.76]

    На скорость нуклеофильного замещения может оказать значительное влияние донорно-акцепторное комплексообразование. Так, ацетолиз 2,4,7-тринитро-9-флуоренил-п-то-зилата ускоряется в 20 раз, если в реакционную среду ввести фенантрен. Спектроскопически показано, что он образует комплекс с переносом заряда с производным флуоренила. Подавая п-электроны, фенантрен содействует поляризации связи С—ОТз и последующему отщеплению тозилат-иона [c.191]


Смотреть страницы где упоминается термин Отщепление нуклеофильное: [c.174]    [c.120]    [c.204]    [c.173]    [c.163]    [c.116]    [c.162]    [c.25]    [c.54]    [c.559]    [c.47]    [c.103]    [c.240]    [c.296]    [c.200]   
Справочник Химия изд.2 (2000) -- [ c.458 ]

Курс теоретических основ органической химии (1959) -- [ c.247 ]

Теоретические основы органической химии (1979) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте