Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа выхода и адсорбция

    Одним из ранних и широко распространенных методов исследования процессов адсорбции и окисления является измерение работы выхода электрона [28, 38]. Адсорбированные на поверхности металла атомы могут очень сильно изменять работу выхода. Адсорбция ионоа или диполей приводит к образованию дополнительного двойного электрического слоя. Из классических законов электростатики следует, что изменение работы выхода должно следующим образом зависеть от степени покрытия поверхности  [c.32]


    Метод [54, с. 38—41] позволяет оценить адсорбируемость топлива на поверхности металла и, как следствие, его противоизносные свойства при граничном трении. Основан метод на измерении работы выхода электрона (РВЭ), т. е. энергии удаления электрона из силового поля кристаллической решетки металла. Поскольку адсорбция (физическая и химическая) изменяет величину РВЭ, измерение разности РВЭ позволяет оценить величину и скорость адсорбции топлива. Для этого измеряют РВЭ металла до его контакта с топливом и затем после выдерживания в топливе по разности судят о величине адсорбции на данном металле исследуемого топлива. [c.123]

    Для объяснения резкого усиления нормального фотоэлектрического эффекта металла под влиянием адсорбции молекул воды, а также молекул аммиака Зурман [53] принимает, что при хемосорбции этих молекул возникают аналогичные координационные связи. При этом образуются диполи, направленные своими положительными концами от поверхности, вследствие чего уменьшается работа выхода электрона и, следовательно. [c.50]

    Фрумкин С сотрудниками [165] изучал действие кислорода "на железо, в результате которого происходит пассивация последнего. В этом случае ионы железа также мигрируют поверх первого мономолекулярного слоя окиси, увеличивая тем самым способность металла испускать электроны. В зависимости от температуры процесс окисления заканчивается после образования на поверхности металлического железа от двух до четырех слоев окиси, которые предохраняют металл от дальнейшего окисления точно также, как два слоя окиси цезия, находящиеся на поверхности цезия, защищают его от окисления при —180° С. При 100° С максимум разности потенциалов по отношению к вольфраму (минимум работы выхода) наблюдается в том случае, когда покрытие адсорбированным кислородом составляет 22-10 молекул на 1 см" истинной поверхности железа (см. рис. 23). При 270° С этот максимум соответствует адсорбции 72-10 молекул кислорода. После перехода через максимум первоначальная разность потенциалов по отношению к вольфраму достигается при указанных температурах в присутствии соответственно 60 10 и 100-10 молекул адсорби- [c.106]

    Хемосорбированные атомы и ионы довольно сильно изменяют некоторые свойства адсорбентов. Особенно сильное изменение претерпевает работа выхода при электронной эмиссии (а следовательно, также и сродство к электрону), которая при этом может как уменьшаться, так и увеличиваться. Изменения работы выхода в свою очередь также оказывают влияние на величину энергии адсорбции. [c.109]


    Как было ранее подчеркнуто автором [46, 246], снижение работы выхода оказывает сильное влияние на теплоту адсорбции. В разделе V, 9 было отмечено, что теплота адсорбции атома цезия, перешедшего под влиянием хемосорбционного процесса в ион цезия, определяется соотношением [c.132]

    Когда на поверхности металла адсорбируется некоторое количество цезия, работа выхода уменьшается. Это означает, что при последующей адсорбции атомов цезия будет происходить меньший выигрыш энергии. Подставляя уравнение (54) в (55) и обозначая теплоту адсорбции символом чтобы [c.132]

    Хемосорбированные атомы большинства веществ образуют диполи на поверхности адсорбентов. Эти диполи могут быть ориентированы либо положительными, либо отрицательными концами в направлении от металла (раздел V, 86). В обоих случаях диполи оказывают влияние на работу выхода металла, увеличивая ее, когда они направлены отрицательными концами от металла, и уменьшая ее при ориентации в противоположном направлении. Поскольку образование отрицательного диполя (отрицательный полюс направлен от поверхности) происходит путем смещения электрона от металла к адсорбированному атому, то при этом совершается работа против работы выхода. С увеличением степени заполнения, когда работа выхода возрастает, для образования новых диполей требуется затрата большего количества энергии. Поэтому теплота адсорбции будет уменьшаться. В случае положительных диполей сродство металла к электрону облегчает их образование. Поскольку сродство к электрону с увеличением количества адсорбированных атомов уменьшается, то результатом этого снова является уменьшение теплоты адсорбции с увеличением степени заполнения [254]. [c.140]

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]

    Итак, если реагирующие вещества и продукты реакции не адсорбируются специфически на электроде, то влияние природы металла проявляется только через изменение строения двойного электрического слоя. Влияние природы металла на скорость стадии разряда — ионизации обусловлено как изменением строения двойного слоя, так и различием в энергиях адсорбции реагирующих веществ и продуктов реакции на разных металлах. Что же касается работы выхода электрона, то она не входит непосредственно в уравнения электрохимической кинетики. [c.275]

    М. И. Темкиным была разработана модель наведенной неоднородности, обусловленной наличием на поверхности электрода электронного газа. М. Будар предложил объяснять наведенную неоднородность изменением работы выхода электрона из металла в результате адсорбции дипольных частиц и вследствие этого изменением энергии адсорбции с ростом заполнения. И а случае первой, и в случае второй модели можно ожидать приближенно линейного уменьшения энергии адсорбции с ростом заполнения, что приводит к изотермам, близким в области средних заполнений к логарифмической. [c.96]

    Теория Нернста приводит к ошибочному выводу о независимости стандартного электродного потенциала от природы растворителя, поскольку величина Р не является функцией свойств растворителя. Нельзя также считать правильным первое положение теории, поскольку скачок потенциала на границе металл — раствор не совпадает с электродным потенциалом, а представляет его часть. В электродный потенциал входят некоторые величины, характеризующие специфическую адсорбцию ионов на поверхности металла, а также работу выхода иона из данного металла. Недостатком теории Нернста является и то, что понятие об электролитической упругости растворения металла не имеет определенного физического смысла. Все это привело к необходимости пересмотра теории возникновения электродного потенциала. [c.164]


    Нужно оговориться, что скачок потенциала на границе металл — вода в нулевом растворе, т. е. в отсутствие ионного двойного слоя, благодаря адсорбции растворенных молекул и ориентации молекул воды не будет точно равен разности потенциалов на границе металл — вакуум. Это влияние аналогично влиянию адсорбционных слоев на работу выхода электронов в вакууме, широко используемому в электронной технике. [c.384]

    Таким образом, мы приходим к выводу, что два тела, обладающие различной работой выхода (ф и ср" , взаимодействуют между собой с выделением работы. Полученный вывод является чрезвычайно важным для понимания причин, вызывающих физическую адсорбцию на поверхности многих тел. Из формулы (135) видно, что энергия физической адсорбции может существенно зависеть от величины работы выхода адсорбирующего тела. При использовании в качестве адсорбентов полупроводниковых материалов появляется возможность управлять величиной работы выхода, а следовательно, и процессами адсорбции. [c.158]

    При работе полупроводникового прибора даже в атмосфере весьма сухого воздуха возможны обратимые изменения его параметров. Эти изменения связаны с происходящими в окисной пленке процессами адсорбции—десорбции молекул кислорода. Указанные процессы имеют место при изменениях либо температуры, либо работы выхода электронов из кристалла полупроводника. Концентрация адсорбированных в окисной пленке молекул кислорода Со, определяется обычным выражением [c.217]

    Работа выхода электронов из полупроводника ф определяется концентрациями носителей заряда [см. формулу (29)) и может быть изменена либо за счет освещения кристалла, либо инжек-цией через р — п п — р) переход. Отсюда следует, что концентрация адсорбированных в окисной пленке молекул кислорода зависит от электрических режимов (например, от плотности протекающего через р — п переход тока), в которых работает полупроводниковый прибор. Время установления равновесия между поверхностью кристалла и окружающей атмосферой составляет при комнатной температуре от двух часов до двух суток. Поэтому после резкого изменения электрического режима, например, после включения полупроводникового прибора, происходит сравнительно медленное (2—48 час.) изменение его параметров, связанное с процессами адсорбции или десорбции кислорода. Такое явление получило название тренировки и типично для некоторых кремниевых приборов. Из сказанного выше ясно, что изменение параметров прибора, происходящее при тренировке, носит временный характер и при возвращении к исходному режиму постепенно исчезает. [c.218]

    С увеличением концентрации соли кадмия в растворе растут специфическая адсорбция катионов на поверхности и работа выхода протона на поверхность. [c.202]

    В гл. I, 24 мы познакомились с сорбцией и, в частности, с адсорбцией, с их ролью в гетерогенном катализе. Поверхностные явления, в частности адсорбция, играют большую роль в самых различных областях техники. Для нас важно знать, что адсорбция изменяет не только поверхностные, но и объемные свойства полупроводниковых материалов, влияет на работу выхода электронов с поверхности твердых тел. С адсорбцией и десорбцией приходится сталкиваться в процессах химического и электрохимического травления и полирования полупроводников и металлов, при очистке поверхности твердых тел от загрязнений и т. д. Адсорбция и связанные с ней изменения поверхностного натяжения и разности потенциалов на границе раздела фаз играют громадную роль в коллоидной химии и электрохимии. Адсорбция используется для очистки газов и жидкостей, для удаления остатка газов из вакуумных приборов, для поглощения ОВ (в противогазах), для извлечения ценных веществ из растворов и газов и из отходов различных производств с целью рекуперации, для разделения и анализа смесей (хроматография) и т. д. [c.168]

    Среди многих свойств, определяющих адсорбционные явления, особое место занимает величина дипольного момента ц, который возникает при адсорбции. Величина дипольного момента указывает на тип связи (большие значения л —ионные связи, малые значения М- — ковалентные), кроме того, работа выхода электрона из металла, необходимая для удаления электрона в вакуум с наиболее высокого занятого уровня в твердом теле, изменяется вследствие возникновения при адсорбции поверхностных диполей. Это явление связано с из- [c.369]

    В настоящее время техника эксперимента находится на таком высоком уровне, что можно наблюдать эмиссию электронов одного-единственного атома (например, измеряя интенсивность отдельного пятна) в зависимости от V и, таким образом, находить работу выхода отдельного атома. Можно определять также изменение работы выхода адсорбции атома на активном центре поверхности. Так, в результате адсорбции азота па вольфраме работа выхода плоскости (ТОО) уменьшается с 4,71 до 4,21 В [112]. Фактически при этом почти на атомном уровне определяется изменение поверхностного потенциала АУ [119] (см. разд. Ш-ЗБ). Отсюда можно сделать интересные выводы относительно величины и направления диполя, создаваемого адсорбированным атомом. Например, азот, адсорбированный на плоскости (100) вольфрама, по-видимому, является отрицательным концом образующегося при этом поверхностного диполя, тогда как при адсорбции на плоскости (111) возникает обратная ситуация, т. е. он несет положительный заряд. Более подробно этот вопрос обсуждается в монографии Гомера [120] (см. также [104]). Некоторые сведения о применении автоэмисси-онных методов для исследования хемосорбции даны также в гл. XV. [c.235]

    Способность атомов лдсорбата при образовании связи с атомом адсорбента отдавать или принимать электроны (иначе говоря, способность поляризоваться), называемая электроотрицательностью, относится к числу важных факторов, характеризующих адсорбцию. Экспериментально установлена линейная зависимость между электроотрицательностью адсорбата и результирующим изменением работы выхода электрона. Энергия связи физически адсорбированных частиц зависит от их размеров чем больше частица, тем, как правило, выше энергия связи [209]. [c.183]

Рис. 54. Изменение работы выхода электрона (ДКРП) стали марки Ст. 3 в зависимости от продолжительности контакта при адсорбции различных марок товарных топлив. Рис. 54. <a href="/info/1658674">Изменение работы выхода</a> электрона (ДКРП) <a href="/info/122012">стали марки</a> Ст. 3 в зависимости от <a href="/info/416604">продолжительности контакта</a> при <a href="/info/1825143">адсорбции различных</a> марок товарных топлив.
    Несмотря на бесспорность того, что -электроны оказывают влияние на условия образования и прочность ковалентных связей, возинкающих при адсорбции иа металлах, нельзя ожидать простой зависимости между теплотой хемосорбции и каким-либо свойством, связанным с -электронами, так как хемосорбция зависит также от других свойств металлов. Последний член в выражении (32), учитывающий электроотрицательность металла, до некоторой степени характеризует легкость потери металлом электронов. Следует указать, что порядок расположения металлов по уменьшению теплот хемосорбции (см. раздел V, 86) почти совпадает с порядком их расположения по возрастанию работ выхода. Для образования диполей с участием адсорбированных атомов и металла необходимо совершить работу против работы выхода, свойственной металлу. Поэтому можно предположить, что чем меньше работа выхода, тем меньшую работу необходимо совершить для образования этих диполей и тем больше будет дипольный момент. [c.60]

    Большинству центров, активных по отношению к вандерваальсовой адсорбции, нельзя приписать способности усиливать поляризацию молекул, адсорбированных на проводящих поверхностях (см. раздел У,7), а также способности влиять на образование ионов путем перехода электрона между адсорбированным атомом или молекулой и поверхностью металла (см. раздел У,8а и частично также 86). Однако поскольку силы, управляющие переходом электронов, связаны с работой выхода, которая неодинакова на разных гранях, то можно ожидать, что эти силы на разных кристаллических гранях будут иметь различные зна- [c.68]

    Аналогичным образом изучалась адсорбция натрия, бария и гория на вольфраме и молибдене, Натрий на вольфраме и молибдене и барий на молибдене адсорбируются преимущественно на гранях 211 [217], а барий адсорбируется на вольфраме на гранях 111J. Торий адсорбируется преимущественно на гранях 111 , но не на гранях ПО [217]. Это указывает на то, что, кроме работы выхода, но-видимому, играют роль также другие факторы. [c.125]

    Итак, теория и эксперимент показывают, что работа выхода электрона из металла в раствор при заданном электродном потенциале Е не зависит от природы металла. Учитывая этот результат, становится физически понятным, почему и в неравновесных условиях при = onst влияние природы металла на скорость стадии разряда — ионизации может проявляться через энергию специфической адсорбции веществ О и R, через строение двойного электрического слоя, но не через работу выхода электрона. Для экспериментальной проверки этих выводов можно воспользоваться или уравнением для тока разряда, вытекающим из (45.21), [c.272]

    Большинство исследователей склоняются к мысли, что осаждение атомов металла при потенциалах ниже равновесного следует рассматривать как результат большей свободной энергии адсорбции атомов металла на чужеродной подложке (подложке из другого металла), чем на том же металле [91 184 188 193 194 204 221 241 243 244]. На этой основе были предложены модели ДФО, связывающие избыточную свободную энергию адсорбции, пропорциональную А м = Еы — Er ( м — потенциал выделения М на 71 1, а — равновесный потенциал металла М в данных условиях), с физическими характеристиками металлов М и и их иогюв [91 204 221 251 255], в частности с работами выхода электронов и электроотрицательностями. Так как характер распределения металла по поверхности и работа адсорбции зависят от состава раствора и особенно от присутствия поверхностно-активных веществ, то и в этом случае комбинация ионов тяжелых металлов (в концентрациях, исключающих контактный обмен, но не ДФО) с ПАОВ может оказаться весьма эффективной и экономичной антикоррозионной добавкой. [c.89]


Смотреть страницы где упоминается термин Работа выхода и адсорбция: [c.90]    [c.225]    [c.470]    [c.28]    [c.166]    [c.198]    [c.71]    [c.77]    [c.132]    [c.166]    [c.134]    [c.162]    [c.217]    [c.34]    [c.447]    [c.208]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.266 , c.285 , c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбции работа

Изменение работы выхода в результате адсорбции

Исследования адсорбции и работы выхода

К у л и ц к и й. Сопоставление изменений работы выхода полупроводникового катализатора при адсорбции некоторых паров с фотопроводимостью и каталитической активностью

Металлы, адсорбция газов работа выхода

Работа выхода

Работа выхода и адсорбция степень заполнения

Работа выхода и адсорбция точка нулевого заряда

Работа выхода электрона адсорбции

Работа выхода электрона с теплотой адсорбции



© 2024 chem21.info Реклама на сайте