Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, адсорбция газов работа выхода

    М. И. Темкиным была разработана модель наведенной неоднородности, обусловленной наличием на поверхности электрода электронного газа. М. Будар предложил объяснять наведенную неоднородность изменением работы выхода электрона из металла в результате адсорбции дипольных частиц и вследствие этого изменением энергии адсорбции с ростом заполнения. И а случае первой, и в случае второй модели можно ожидать приближенно линейного уменьшения энергии адсорбции с ростом заполнения, что приводит к изотермам, близким в области средних заполнений к логарифмической. [c.96]


    В гл. I, 24 мы познакомились с сорбцией и, в частности, с адсорбцией, с их ролью в гетерогенном катализе. Поверхностные явления, в частности адсорбция, играют большую роль в самых различных областях техники. Для нас важно знать, что адсорбция изменяет не только поверхностные, но и объемные свойства полупроводниковых материалов, влияет на работу выхода электронов с поверхности твердых тел. С адсорбцией и десорбцией приходится сталкиваться в процессах химического и электрохимического травления и полирования полупроводников и металлов, при очистке поверхности твердых тел от загрязнений и т. д. Адсорбция и связанные с ней изменения поверхностного натяжения и разности потенциалов на границе раздела фаз играют громадную роль в коллоидной химии и электрохимии. Адсорбция используется для очистки газов и жидкостей, для удаления остатка газов из вакуумных приборов, для поглощения ОВ (в противогазах), для извлечения ценных веществ из растворов и газов и из отходов различных производств с целью рекуперации, для разделения и анализа смесей (хроматография) и т. д. [c.168]

    Надлежащим образом выбранный один-единственный геттер может иногда служить для очистки двух газов. Так, при изучении адсорбции в ионном проекторе как создающий изображение газ — гелий, так и исследуемый газ должны быть тщательно очищены. При исследовании азота оба газа можно хорошо очистить никелем [76]. Масс-спектрометрический анализ эффективности очистки пока еще не доступен. Косвенные доказательства, например измерения работы выхода, дают основание полагать, что в случае N2 содержание примесей уменьшается до 5 частей на 10 . Эти геттеры используются в виде тонких пленок, которые получаются в самой системе путем прямого напыления с нагреваемой электрическим током нити из испаряемого металла, а в случае германия — из проволочной спирали. Поскольку селективность геттеров меньше, чем селективность диффузионных мембран, последние получили более [c.278]

    Таким образом, работа выхода электрона зависит от энергетики электронного газа металла как внутри металла, так и на его поверхности. Поэтому работа выхода электрона, а следовательно, свободная поверхностная энергия металла и его полная Потенциальная энергия значительно меняются в случае адсорбции и хемосорбции ПАВ на поверхности металла [122]. [c.76]

    Основные научные работы относятся к химии поверхностных соединений и катализу. Исследовал механизм физической и химической адсорбции газов на металлах. Пришел к выводу (1930—1940-е), что а) активными центрами хемосорбции являются участки обрыва роста кристаллических граней б) поверхность металлов подобна полирадикалу, обладающему свободными валентностями в) хемосорбция на чистых поверхностях не требует энергии активации. Обнаружил (1950-е) различную степень диссоциации молекул водорода при хемосорбции. Установил (1930—1950-е) случаи эндотермической хемосорбции водорода и кислорода и количественно описал их. Развил представления об ионной адсорбции и ее связи с работой выхода электрона и ионизационным потенциалом адсорбированного газа, [c.166]


    Интересно сравнить. между собой различные активные металлы, принимая в качестве электронных параметров работу выхода, число дырок в -зоне, вес -состояний в металлической связи, а в качестве функций от этих параметров — теплоту адсорбции определенного газа (например, Hg), скорость модельной реакции (т. е. активность) или, если это возможно, константу скорости или энергию активации. [c.106]

    Изучение эмиссии под влиянием поля позволяет получить значение работы выхода электрона альтернативными путями. В соответствии с уравнением (30) изменение тока эмиссии с величиной приложенного поля дает прямой метод измерения Ф. Однако из результата исследования эмиссии под влиянием поля фактически невозможно получить точные значения абсолютных величин Ф. Для реализации сильного поля необходима очень острая геометрия (кончик эмиттера обычно имеет диаметр порядка 1000— 10 000 А), что вызывает некоторые сложности при определении точной величины приложенного поля на расстоянии нескольких ангстрем от эмиттирующей поверхности. Можно получить точные относительные значения Ф для разных частей одного и того же эмиттера. Поскольку опыты можно проводить в интервале температур 4—800° К, то могут быть исследованы эффекты, связанные с адсорбцией газов. Выбор материала эмиттера ограничивается высокими требованиями к его механической прочности. Металлы, обладающие высокими точками плавления и, следовательно, годные для изучения термоионной эмиссии, обычно характеризуются также и высокой прочностью. Таким образом, существует возможность сравнения различных методов, а абсолютную шкалу работы выхода в случае эмиссии под влиянием поля можно получить на основании величин работы выхода, полученных методом термоионной эмиссии. [c.163]

    Изменение работы выхода, наблюдаемое при адсорбции газа на поверхности металла, обусловлено электронным взаимодействием между металлом и адсорбатом. В большинстве случаев хемосорбция сопровождается процессом перехода электронов , природа которого зависит от электронного строения и поверхностных свойств металла. Поэтому желательно прежде всего рассмотреть в общих чертах процесс адсорбции и образование химических связей с поверхностью металла. [c.79]

    Не подвергавшиеся спеканию. металлические пленки, как правило, непригодны для изучения работы выхода вследствие того, что их электрические свойства определяются микрокристаллитами и отличаются от характеристик, полученных для. массивного металла [28]. Многие пленки показывают расширение параметров решетки на 1—2% [29] и приобретают нормальные металлические свойства только после спекания. Эти структурные изменения обнаруживаются при измерениях работы выхода, показывающих, что работа выхода металлической пленки в процессе спекания возрастает [30]. Напыленная пленка металла, весящая 50 мг, может содержать 10 000 атомных слоев и иметь внутреннюю поверхность, равную примерно 5000 см , а так как для покрытия этой поверхности необходимо 10 молекул (число, значительно превышающее количество газа, адсорбируемого на стенках хорошо обезгаженного сосуда), то можно ожидать, что пленка в течение некоторого времени сохранится незагрязненной [31]. Имеется много доводов в пользу чистоты металлической поверхности, полученной напылением [31]. В частности, найдено следующее а) данные Робертса по теплоте адсорбции на вольфрамовых нитях согласуются с данными Бика [32] для напыленных металлических пленок, так что в обоих случаях были получены, по всей вероятности, одинаковые поверхности, и можно предположить, что обе поверхности были чистыми б) величины поверхности, рассчитанные из данных по физической адсорбции, согласуются с результатами, полученными из хемосорбционных из.мерений, а это было бы невозможным, если бы часть поверхности была загрязнена, ибо величины, определенные по хемосорбции, были бы меньше найденных по физической адсорбции, которая не является специфичной в) было установлено, что величина хемосорбции находится в прямой зависимости от веса пленки, тогда как в случае существенного загрязнения пленок она была бы более заметной для пленки, весящей 5 лгг. че.м, скажем, для пленки весом 50 мг. [c.94]

    Первые измерения фотоэлектрической эмиссии для случая газовых пленок на металлических поверхностях были проведены Зурманом и Чехом [69]. Они напыляли на платиновую пластинку пленки Ag, Л1 и Т1 и определяли работу выхода до и после насыщения водородом. Кривые спектрального распределения анализировались методом Фаулера максимальные значения поверхностных потенциалов, связанные, возможно, с загрязнением поверхности, составляли для системы Ag +.Н2 + 0,81 в, для системы А1 + Нг —0,81 в и для системы Р1 + На +2,2 в. Зурман и Захтлер [43] исследовали адсорбцию различных газов на платиновой фольге и нашли, что адсорбция молекул Но увеличивает, а адсорбция атомарного Н уменьшает работу выхода платины. Кроме того, было отмечено влияние бомбардировки электронами на поверхность платины, частично уже покрытую водородом. В одном случае, когда работа выхода сначала уменьшалась, а затем возрастала, оказалось, что бомбардировка вначале приводит к диссоциации адсорбированных молекул На на атомы, а после этого — к полному удалению их с поверхности. В случае азота Зурман не наблюдал какого-либо изменения работы выхода платиновой фольги, пока не происходила диссоциация молекул в тлеющем разряде с последующим падением фототока до нуля [68]. При адсорбции бензола на поверхности платины максимальный фототок наблюдался в области монослойного заполнения, откуда был сделан вывод о том, что тс-электроны переходят от адсорбата к металлу [70]. [c.107]


    При рассмотрении достоверных данных [16], имеющихся для некоторых систем металл — газ (Ш + Нг, N1 + На и Ре + На), было обнаружено удовлетворительное согласие между величинами 5(—АН), относящимися к различию дифференциальных теплот адсорбции при изменении 6 от О до 1, и значениями Дф, соответствующими изменению работы выхода, найденному для того же интервала заполнений путем определения поверхностных потенциалов. Однако в такого рода исследованиях, по-видимому, правильнее было бы ограничиться только частью интервала заполнений, например от 0,2 до 0,8, и таким образом избежать влияния поверхностной неоднородности вблизи 9 О и взаимодействия между адсорбированными атомами вблизи 8 1 на теплоту адсорбции. [c.144]

    Можно ожидать, что наблюдаемое на опыте уменьшение или увеличение работы выхода электрона с поверхности металла при адсорбции различных молекул происходит только в том случае, когда электрон смещается либо к поверхности, либо от поверхности катализатора. Если электроны адсорбированной молекулы становятся частью электронного газа металла или, наоборот, электроны металла входят в электронные оболочки молекулы, то наряду с работой выхода будет дополнительно меняться и электрическое сопротивление металла. Обычно изменение сопротивления становится доступным измерению, когда толщина слоя катализатора, являющегося адсорбентом, превышает не более чем в 100 или 1000 раз толщину слоя, в котором происходит электронное взаимодействие. Для таких систем измерение электрического сопротивления прозрачных слоев катализатора может дать ценные сведения относительно характера электронного взаимодействия. [c.335]

    В общем случае значения поверхностных потенциалов нельзя объяснить исходя из простой модели адсорбционной связи. Для ионной адсорбции изменение работы выхода обычно связывается с изменением поверхностного двойного слоя под влиянием нанесенных диполей. Однако для ковалентной адсорбции этот механизм, по-видимому, неприменим, и поэтому изменение работы выхода, вероятно, нельзя правильно выразить соотношением Аф = 2иот8М. Ясно, что для полного объяснения измене 1ий работы выхода при адсорбции простых газов и радикалов необходим более строгий анализ процессов образования связи на поверхности металла. [c.147]

    В поверхностно-ионизационных Г. образуются положит, ионы при адсорбции газов на нагретых пов-стях металлов или их оксидов. Ионизоваться могут компоненты с достаточно низкими потенциалами ионизации, сравнимыми по величине с работой выхода электронов из нагретой пов-сти (эмиттера). Обычно ионизуются не контролируемые компоненты смеси, а продукты их р-ций на каталитически активной пов-сти. В кач-ве эмиттеров применяют, напр., нагреваемые током спирали из Pt, оксидов Мо или W. Нагретый эмиттер одновременно служит одним из электродов ионизац. камеры. Второй ( коллекторный ) электрод выполняют в виде наружного цилиндра. Т-ру нагрева эмиттера изменяют от 350 до 850 °С. С помощью таких Г. определяют фенол, уксусную и муравьиную к-ты, а также (с высокой избирательностью) азотсодержащие орг. соед., в частности анилин, амины, гидразины. Созданы приборы для контроля ряда аминов (диэтиламин, триэгиламнн и др.) в воздухе пром. помещений. Диапазон измеряемых концентраций 10- -10" %. [c.460]

    II на Ф. Изменение АУ при адсорбции газов на металлах исследуют, непосредственно определяя изменение работы выхода. В настоящее время этот способ используют очень щироко (см. рг13Д. V-6Б). Многие ранние работы Лэнгмюра по хемосорбции на металле, возможно, стимулировались пониманием практической важности изучения влияния адсорбированных газов на работу вакуумных ламп. [c.192]

    Дифференциальный анализ водорода. Данный метод, описанный Холлом и Лютинским [149], основан на зависимости реакционной способности водорода при его обмене с дейтерием от природы поверхности, на которой он находится. Пока этот способ использовался только для выявления форм водорода, связанного на металле и на окисле применительно к нанесенной платине, однако метод может оказаться полезным и для выявления различий в реакционной способности поверхности разных металлов при достаточно низкой температуре реакции. Этот метод использовался также для идентификации данных по программированной термодесорбции форм водорода, адсорбированного на дисперсной платине (платиновой черни) [150]. Программированная термодесорбция. Температура, необходимая для десорбции газа с металлической поверхности, зависит от энергии связи газа с поверхностью. Для чистых металлических образцов отдельные пики спектра термодесорбции часто прини-сывают разным типам поверхностных адсорбционных центров. Сводка таких данных приведена Хейуордом [151]. Авторы работы [152] изучали программированную термодесорбцию водорода с дисперсного платинового катализатора (платиновой черни) [152], а в обзоре [153] описана методика исследования таких образцов, предусматривающая десорбцию в поток газа-носителя. По-видимому, возможные изменения десорбционного спектра, полученного для разных газов, например окиси углерода, водорода или азота, могут дать сведения о поверхностном составе катализаторов на основе сплавов. Хотя чаще исследуют металлические образцы без носителя, в благоприятных условиях можно изучать и нанесенные металлы [33] при этом весьма полезно сочетать этот метод и ИК-спектроскопию. Изменения работы выхода. Изменение работы выхода как следствие адсорбции газа может дать сведения о составе поверхности, если известно, что эти изменения для двух чистых компонентов биметаллического катализатора значительно отличаются. Надежнее всего использовать метод для выяснения распределения компонентов сложной системы. Захтлер и сотр. [132, 135] применили фотоэлектрический метод для изучения адсорбции окиси углерода на различных металлических пленках, а Уоллей и др. [154] использовали диодный метод, исследуя адсорбцию окиси углерода на пленках Рс1—Ag. [c.444]

    Возможен и совершенно иной подход. Изучение деплетивной хемосорбцин на окислах-полупроводниках (стр. 197) привело к применению теории граничного слоя к кинетике и величине хемосорбции [56, 57]. Таким путем были выведены изотермы, точно описывающие хемосорбцию, причем оказалось возможным представить ее скорость уравнениями, соответствующими медленным процессам хемосорбцин, описанным в разд. 6 (Б) данной главы. Эта теория была распространена и на кумулятивную хемосорбцию, что свидетельствует о ее успехе. Кумулятивная хемосорбция в большой степени подобна хемосорбции на металлах, и так как адсорбент проявляет свои дефекты в кумулятивной хемосорбцин, целесообразно исследовать ее как основу хемосорбцни на металлах. Волькенштейн [87] считает, что вместо ряда центров, идентичных с решеткой металла, в качестве первоначальных центров хемосорбции действуют дефекты кристалла и что, кроме ряда врожденных дефектов поверхности, новые центры могут создаваться термически или при адсорбции газа на дефекте. Медленную хемосорбцию рассматривают скорее как результат медленного образования центров термическим путем, являющегося активируемым ско-рость-определяющим процессом реакции, а не как простое взаимодействие центров с газом. Кроме того, он показал, что можно вывести обычные изотермы при соответствующем выборе кинетики реакций, приводящих к образованию дефектов. Такие расчеты пока еще не очень распространены и проверены. Аналогичные расчеты были использованы Тэйлором и Тоном [88] для объяснения медленной активированной хемосорбцни. Предположение, что уменьшение теплоты адсорбции с увеличением заполнения поверхности [(е), стр. 208] обусловлено изменением работы выхода [77, 78], так что уже адсорбированный газ влияет на центры, доступные последующей адсорбции, совпадает с представлениями Волькенштейна. Существуют некоторые несомненные доказательства того, что хемосорбция на пленках начинается на дефектах или вблизи от них. [c.210]

    К новым применениям спектроскопии в проблеме катализа следует отнести использование спектра внешнего фотоэлектрического эффекта в поверхности окисных катализаторов под действием короткого ультрафиолетового излучения. Принцип этого метода, осуществленного аспирантом Вилесовым в ЛГУ, заключается в том, что при помощи ионизационного счетчика измеряется ничтожная по своей величине (10 А) фотоэмиссия с поверхности полупроводникового катализатора, вызываемая освещением ультрафиолетовым светом в области длин волн короче 2500 А. Длинноволновый порог фотоэффекта, а следовательно, работа выхода электрона с очищенной от газов поверхности может быть определена с точностью, превышающей 0,1 эв. После адсорбции на полупроводнике газов, примешанных к основному газу счетчика (аргон), порог фотоэффекта испытывает значительные перемещения в сторону больших или меньших частот, свидетельствующие об изменении работы выхода. Как и для хорошо изученного внешнего фотоэффекта с металлов, это явление вызвано поляризацией или ионизацией адсорбированных газовых молекул, причем поляризация или ионизация с направлением поверхностного электрического поля, благоприятствующим выходу электрона, снижает работу выхода и наоборот. [c.221]

    Следует выяснить, насколько эта схема подтверждается экспериментальными данными. То обстоятельство, что некоторые металлы, как, например, Pt, Pd и Ni, хорошо известные в качестве активных катализаторов, обладают частично незаполненной d-зоной [55], привлекло за последнее время внимание к переходным металлам. В результате ряда работ, посвященных исследованию каталитической активности сплавов переходных металлов (эти работы будут подробно рассмотрены ниже), была подтверждена та точка зрения, что образование ковалентных связей с хемосорбированными частицами облегчается, если в металлической фазе содержатся дырки в -зоне. Условие высокой плотности энергетических состояний у поверхности Ферми в этих случаях всегда выполняется, так как плотность уровней в d-зоне значительно выше, чем в s-зоне. Эти положения можно увязать с теорией валентных связей Полинга [56], в которой представление о дырках в d-зоне переходных металлов заменяется по существу представлением о свободных атомных d-орбитах. Полинг показал с помощью своей теории, что пространственное расположение атомов переходных металлов тесно связано с их -характером и не исключено, что в некоторых случаях кажущееся существование геометрического фактора может быть обусловлено главным образом электронной структурой металлов. Будар отметил, что этим, вероятно, объясняется найденная Биком на ряде пленок переходных металлов связь между строением их пространственной решетки и их активностью в отношении реакции гидрирования этилена [57]. Гипотеза о том, что более высокое значение -характера благоприятствует ковалентной хемосорбции, возникла также на основании изучения адсорбции [18]. Бик успешно интерпретировал с этой точки зрения свои последние данные по хемосорбции водорода [57]. Эти представления были полностью подтверждены исследованиями Трепнела [58], который изучил активность пленок почти двадцати различных металлов в отношении хемосорбции ряда газов. Установить какую-либо корреляцию с работой выхода, по-видимому, не удается, и это может свидетельствовать о том, что высокая плотность уровней у поверхности Ферми является более важным фактором, чем большая работа выхода. Несомненно, что предварительное отравление медной пленки малыми количествами кислорода (благодаря чему увеличивается работа выхода), не способствует хемосорбции водорода [59]. [c.497]

    Т. Тоя [48] на основе квантово-механической теории электронного газа в металле показал, что существует два совершенно различных состояния адсорбированных на металле водородных атомов г-состояние, обусловленное адсорбцией в обычном смысле, когда адатом располагается вне электронной поверхности металла, и -состояние, при котором адатом затянут внутрь электронной поверхности . Электронной поверхностью Т. Тоя называет поверхность, на которой происходит резкий спад электронной плотности металла. Энергия г- и -состо- яний для одного и того же металла различна на разных кри-сталлографических гранях. Энергия г-адатома тем ниже, чем - менее плотно упакована кристаллографическая плоскость. Энер-ГИЯ 5-адатома также имеет более низкое значение на менее плотной кристаллографической грани вследствие меньшего отталкивания, обусловленного ионами металла, но сильно зависит ют работы выхода соответствующей грани [48]. Согласно [49], существование -состояния адатома возможно благодаря тому обстоятельству, что кинетическая энергия в модели Томаса— Ферми [c.17]

    Измерения ПП, появляющегося при изменении КРП, требуют присутствия отсчетной поверхности. В идеальном случае она должна быть совершенно инертной, т. е. она не должна физически адсорбировать, хемосорбировать или реагировать с исследуемыми газообразными адсорбатами. Физическую адсорбцию предотвратить можно только, если проводить исследования в вакууме это значительно усложняет проведение экспериментов. Поверхность должна быть проводящей, по следует по возможности избегать металлических поверхностей (за исключением специально загрязненных), так как даже по отношению к инертным газам они имеют большую способность к физической адсорбции, чем другие поверхности. В большинстве хемосорбционных исследований ошибка, вносимая физической адсорбцией, мала, поскольку количества, адсорбированные на отсчетной поверхности и хемо-сорбированные на исследуемой поверхности, почти одинаковы. В диодном методе не возникает затруднений, потому что отсчет-ная поверхность (обычно вольфрамовая нить) остается чистой в присутствии многих адсорбатов благодаря тому, что она все время нагрета до высокой температуры. Во всяком случае работа в условиях пространственноограничивающего заряда маскирует изменение работы выхода нити. При применении конденсаторного метода отсчетную пластинку лгожно сделать из неактивных металлов, например золота или, при работе с азотолг, платины. В настоящее время обычно используется метод, заключающийся [c.126]

    Образование поверхностных ионов можно представить себе аналогичным образованию ионной решетки Na l. При соединении натрия с хлором происходит переход электрона с Na на С1, в результате чего Na становится положительным, а С1 — отрицательным ионом. Подобно этому, если атом после адсорбции на металлической поверхности продолжает связывать такое же число электронов, как и до адсорбции, он определяется как адсорбированный атом. Если же один из его электронов перестает вращаться вокруг ядра и связывается с металлической поверхностью, то в результате получается адсорбированный положительный ион. Если же электрон перестает быть связанным с металлической поверхностью и начинает вращаться вокруг адсорбированного атома, то последний становится отрицательным ионом. Наконец, если электрон вращается попеременно то вокруг ядра металла, то вокруг ядра адсорбированного атома, то адсорбированная частица является попеременно или адсорбированным ионом или адсорбированным атомом. Беккер показал существование всех этих видов адсорбции, определяя 9—работу выхода или теплоту испарения электрона для различных покрытых адсорбированным газом поверхностей. Из данных по адсорбции ионов можно было вычислить, что вблизи поверхности существуют очень сильные электрические поля. Эти поля, обязанные своим существованием адсорбированным ионам, оказывают действие на адсорбированные атомы даже на расстоянии 10 й более атомных диаметров, вследствие чего возможность испарения адсорбированного атома или адсорбированного иона зависит от присутствия других атомов по соседству с ним. [c.67]

    Большие успехи в изучении X. достигнуты в последнее время благодаря применению новейших физико-химич. методов исследования. Напр., изучение X. на металлич пленках (N1, Р1), полученных в ультравакууме (10 —10 мм), показало, что такие пленки обладают большой ненасыщенностью. Молекулы На, Оа II других газов хемосорбируются на них без энергии активации. Малые значения динольного момента этпх хемосорбированных слоев, обнаруживаемые измерениями работы выхода электронов, указывают на образование ковалентной связи. Вероятно, в ней участвуют -электроны металлов. В присутствии загрязнений может наблюдаться энергия активации за счет хпмич. реакции адсорбата (На, Оа) с этими загрязнениями. Энергия активации при X. на металлах может указывать также на растворение газа в поверхностном слое. Изучение хемосорбированных слоев на металлах методами дифракции медленных электронов эмиссионного электронного и ионного проекторов показало в ряде случаев кристаллохимич. соответствие структуры хемосорбированного слоя и объема металла и резкую зависимость структуры хемосорбированного слоя и величины X. от кристаллографич. индекса грани. Напротив, при адсорбции Оа и J. на Ое-было обнаружено отличие структуры хемосорбированного слоя от объема адсорбента. [c.313]

    При исследованиях каталитических свойств металлов в течение последней четверти века большое внимание уделялось электронному фактору. К началу 30-х годов Ленгмюр установил, что щелочные металлы связываются вольфрамом в виде ионов, а Ридиел и Вансбруг-Джонс высказали предположение о наличии связи между работой выхода металлов и скоростью каталитических реакций. Работы де Бура значительно углубили наши знания об ионной адсорбции и ее связи с работой выхода и ионизационным потенциалом адсорбированного газа. Кроме того, Леннард-Джонсом была сформулирована проблема перехода электронов при хемосорбции. [c.198]

    Босворс, Ридиэл и Эли [И —13, 13а] измерением контактной разности потенциалов определили изменение работы выхода электронов при адсорбции газов на поверхности металлов. Миньоле [14] исследовал изменение поверхностного потенциала металлических пленок при образовании на них адсорбированных двухслойных газовых пленок. Де Бур, Краак и Вервей [15, 16], исследуя влияние кислорода на полупроводниковые слои молибдена при 90° К, наблюдали увеличение электрического сопротивления, что было ими объяснено образованием поверхностного окисла. Зурман и Шульц [9, 17, 18] наблюдали при адсорбции газов и паров изменение сопротивления тонких слоев никеля, которое [c.335]

    К аналогичным результатам пришли авторы работы [25], изучая электризацию при разрыве контакта металл-полимер. В качестве полимеров изучали политетрафторэтилен (ПТФЭ), полистирол (ПС). Было найдено, что адсорбция кислорода увеличивает работу выхода, а адсорбция влаги снижает ее. Таким образом, при контактном заряжении главную роль играет внутренняя структура материалов, однако большое значение имеют и поверхностные трудно контролируемые факторы адсорбция газов, наличие жировых пленок, влаги на поверхности, трибоэффект. [c.11]

    В последние годы получила дальнейшее развитие предложенная Темкиным в 1955 году концепция двумерного электронного газа для объяснения линейной зависимости теплоты адсорбции от степени покрытд я. Уточнение первоначальной теоретической трактовки, основанной на зоммерфельдовской модели металла, проведено в [6]. Экспериментальное исследование проблемы выполнено в работах [7—10] для случая адсорбции кислорода на золоте и меди, а также реакции адсорбированного кислорода с водородом и окисью углерода на серебре, золоте и меди. В проведенных исследованиях была детально изучена зависимость скоростей адсорбции и реакций, а также работы выхода от заполнения поверхности кислородом. [c.8]

    В работах [51, 52] исследованы спектры поглощения в видимой области очень тонких гранулярных слоев Au до и после адсорбции NH3. Полученные результаты обработаны по теории плазменных колебаний электронов в металле (электронный газ в поле положительных ионов металла). На основе анализа спектров сделан вывод, что адсорбция NH3 приводит к увеличению концентрации электронов проводимости в Au, а пленка Au наряду с гранулами содержит еще и атомные группы. При изучении реакции разложения НСООН на гранулярных пленках Au при 100—180° с одновременным определением работы выхода было показано, что Дф в процессе реакции больше Дф чистой пленки 53]. Полученный результат объясняется разложением поверхностных ионов H OO с переходом электронов в металл. [c.22]

    Поскольку в каталитической реакции участвует непосредственно поверхностный слой твердого тела, возникла необходимость в методах, позволяющих исследовать геометрическое строение и электронное состояние только поверхностного слоя, а не более глубоких слоев. Для того чтобы приблизиться к этим условиям, уже давно было предложено проводить исследования на объектах с высокой степенью дисперсности, например, на тонких металлических пленках, осажденных из газовой фазы в вакууме. Успехи в этой области зависели от развития высоковакуумной техни1си и стали возможными только в последние десятилетия. Для примера можно привести исследования электрического сопротивления тонких металлических пленок во время адсорбции различных газов, а также определение работы выхода электронов с поверхности каталитически активных металлов, проведенные Зурманом и сотр. [57, 581. Позже, однако, оказалось 452], что результаты этих работ были ошибочны, так как ввиду недостаточно высокого вакуума (10мм рт. ст.) полученные тонкие пленки металлов содержали загрязнения. Дальнейшие работы в этом направлении проводились с применением более высокого вакуума и это позволяло допускать, что исходные пленки металлов были достаточно чисты [45, 46, 52, 53, 59]. Изменения работы выхода электронов и электропроводности металлов при адсорбции газа на металлической поверхности связано с изменением положения уровня Ферми вследствие взаимодействия между адсорбентом и адсорбированным веществом. [c.138]

    Другим способом исследования работы выхода электронов является метод холодной эмиссии в приложенном электрическом поле. Металлический адсорбент в виде тонкого острия с радиусом кри--визны порядка 500 А находится в электрическом поле напряженностью 10 в см. При этом поле вызывает такое уменьшение энергетического барьера на границе металл—вакуум, что электроны могут выходить наружу (туннельный эффет). Таким путем можно определять работу выхода электрона с разных плоскостей решетки, находящихся на поверхности монокристаллического острия. При адсорбции на острие различных газов можно наблюдать изменение работы выхода на различных участках поверхности [26]. Этот метод требует предварительного прокаливания острия в сверхвысоком вакууме при возможно более высокой температуре и поэтому применим лишь к тугоплавким металлам. Этим методом исследовали адсорбцию на вольфраме, молибдене, платине и никеле. [c.139]


Смотреть страницы где упоминается термин Металлы, адсорбция газов работа выхода: [c.260]    [c.203]    [c.208]    [c.114]    [c.142]    [c.208]    [c.496]    [c.163]    [c.253]    [c.96]    [c.84]    [c.92]    [c.112]    [c.113]    [c.181]    [c.107]    [c.202]    [c.202]    [c.203]    [c.25]    [c.359]   
Структура металических катализов (1978) -- [ c.451 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбции работа

Адсорбция газа на металле

Адсорбция газов

Работа выхода

Работа выхода и адсорбция



© 2025 chem21.info Реклама на сайте