Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классические методы установления строения

    Пути распада молекулярного иона и последующие распады осколочных ионов определяются уже строением самой молекулы органического вещества, т. е. набором и последовательностью в нем атомов, групп и связей. Характер масс-спектра достаточно точно отражает строение молекулы и может служить для определения ее структуры. Распад (так называемая фрагментация) включает в себя как гомолитические, так и гетеро-литические разрывы связей, хотя чаще наблюдаются первые. Таким образом, в отличие от других физико-химических методов исследования органических веществ, масс-спектрометрический метод основан на деструкции молекулы, точнее, возбужденного положительного иона, возникающего из молекулы органического вещества под действием удара электрона. Этим самым масс-спектрометрический метод близок к классическим методам установления строения органических веществ путем деструкции молекулы, но в данном случае весь ход деструкции регистрируется сразу и для всего сложного распада нужно менее одного миллиграмма вещества. [c.589]


    Классические методы установления строения [c.35]

    Химические методы установления строения основываются на проведении с помощью реагентов таких реакций, которые позволяют судить о наличии определенных атомных группировок (функциональных групп) или ионов в молекуле исследуемого соединения. Физические методы установления строения получают все большее развитие. С их помощью устанавливается не только строение исследуемого соединения, но также оказывается возможным определить детали структуры молекулы, например размеры молекулы, атомные расстояния и углы между связями. Физические методы определения строения имеют не только большие возможности по сравнению со старыми методами классической химии, но также позволяют значительно сократить время исследования. В случае же сложно построенных молекул старые методы установления строения вообще бессильны. [c.132]

    Классические работы Лебедева [185 —187 J по избирательному каталитическому гидрированию олефинов послужили отправной точкой для развития и применения этой реакции как метода установления строения непредельных соединений и анализа многокомпонентных смесей этиленовых углеводородов. В основу этого метода была положена различная прочность кратных связей у олефинов разного строения. Сопоставление кинетических кривых гидрирования многокомпонентных смесей олефинов неизвестного состава с кинетическими кривыми эталонных смесей олефинов позволило составить представление о строении компонентов анализируемых смесей. Принципиальные научные положения Лебедева о применимости избирательного каталитического гидрирования к решению структурных вопросов в области непредельных органических соединений были распространены нами на реакцию гидрогенолиза сераорганических соединении. Проведенные экспериментальные исследования по изучению закономерностей протекания реакции гидрогенолиза индивидуальных сераорганических соединений разного строения и их смесей полностью подтвердили наше предположение о возможности применения избирательного каталитического гидрирования для установления строения сераорганических соединений. [c.410]

    Читая работы классиков органической химии, невольно обращаешь внимание на то, с какой тщательностью и любовью описывают они полученные органические вещества, сколько внимания уделяют в этих описаниях очистке и характеристике веществ. В современных работах эта часть выглядит суше и лаконичнее для каждого вновь полученного вещества принято приводить данные его элементного анализа, брутто-формулу приводят также точки плавления и кипения, для жидкостей — показатель преломления. На основании данных, получаемых с помощью современных физико-химических методов исследования (оптических спектров, ядерного магнитного резонанса, масс-спектрометрии и др.), обычно удается составить представление о структуре вещества, не прибегая к классическим химическим методам установления строения, т. е. к постепенной деградации сложного вещества и исследованию получающихся при этом осколков. Такое описание создает зачастую у начинающего химика ложное представление, что современные методы исследования избавляют его от необходимости тщательной химической работы (прежде всего имеется в виду чистота препарата), чго эти новые методы якобы сами по себе способны дать правильный ответ. Изучающему химию важно внушить с самого начала, что современные методы исследования не исключили тщательности в его работе, а, наоборот, подняли требования к чистоте, индивидуальности органического вещества. Многие препараты, полученные по старым методикам и в свое время описанные как индивидуальные — при исследовании, например, методами хроматографии,— оказываются смесями. Между тем правильный анализ, точная температура плавления, правильная спектральная характеристика — все это может быть получено только при работе с хими- [c.354]


    Наряду с деструктивными методами установления строения высших моноса[харидов в настоящее время все еще достаточно широко применяются классические методы, разработанные Э. Фишером в начале нашего столетия. Эти методы базируются на следующих основных принципах [c.320]

    Примером мол ет служить почти двадцатилетняя работа (с 1865 по 1883 г.) выдающегося немецкого химика Байера с сотрудниками, в результате которой удалось выяснить строение природного красителя индиго. В последние годы наряду с классическими химическими методами все большее значение приобретают новые, обычно менее трудоемкие, физические методы установления строения органических соединений. Для ознакомления с достоинствами и недостатками тех и других методов рекомендуем прочитать статью В. Р. Полищука Состязание с Адольфом Байером в журнале Химия и жизнь , № 9 за 1972 г,— 43 Прим. перев. [c.142]

    Образование неустойчивых промежуточных продуктов может быть констатировано на основании детального анализа кинетики реакции. Степень доказательности этого метода обычно определяется тем, насколько широк круг кинетических эффектов и реакций, которые могут быть удовлетворительно описаны предлагаемым механизмом. В этом отношении уместно сравнить этот метод с классическими методами определения строения органических соединений путем деструкции и синтеза, поскольку при решении этой задачи уже давно признано, что данные только по какой-либо одной реакции еще не достаточны для установления правильной структуры. Однако редко бывает так, что кинетические данные являются единственным основанием для механизма. Вероятность существования неустойчивых промежуточных продуктов часто может быть подтверждена опытами, в ре- [c.42]

    Поскольку физико-химическая природа вещества определяется его структурой, в химии исключительно важную роль играют методы установления химического и кристаллохимического строения. До создания современных физических методов исследования химического и кристаллохимического строения вещества для получения информации о структуре соединений пользовались методом химических реакций (механизм и скорость реакций). На этом пути были сделаны определенные успехи. Достаточно напомнить классические исследования по геометрической и оптической изомерии неорганических и органических соединений. Однако, основываясь на химических методах, в принципе нельзя получить количественные данные по длинам химических связей, а также углов между ними. Между тем количественные характеристики по длинам химических связей и пространственной их направленности являются походными данными для определения химического и кристаллохимического строения веществ. [c.173]

    Квантовая химия - это раздел теоретической химии, в котором строение и свойства химических соединений, их взаимодействия и превращения рассматриваются на основе представлений квантовой механики и экспериментально установленных закономерностей, в том числе описываемых классической теорией химического строения. Одно из наиболее важных ее направлений -изучение элементарных актов химических превращений, подчас выделяемое в последние годы отдельно как химическая динамика. Квантовая химия использует математический аппарат и методы квантовой механики для описания и расчета свойств химических соединений, начиная с атомов и простейших молекул и кончая такими высокомолекулярными соединениями, как белки, и [c.3]

    В первый период развития химии углеводов были заложены основные понятия и принципы этого раздела органической химии, созданы классические аналитические приемы и разработаны генеральные синтетические методы. Характерной особенностью этого периода является тесное и плодотворное взаимодействие химии углеводов с другими разделами бурно развивавшейся органической химии. Химия углеводов заимствует из арсенала органической химии различные реакции деградации, необходимые для установления строения углеводов, и многочисленные синтетические приемы. В свою очередь, достижения химии углеводов стимулировали развитие многих общих разделов органической химии кроме уже отмеченного выше влияния на развитие стереохимии, можно упомянуть учение о таутомерии, первые шаги химии полимеров и многое другое. [c.7]

    Щелочное плавление является одним из классических методов деградации органических соединений, с помощью которого при исследовании строения многих природных соединений была получена весьма ценная информация. Реакции, протекающие в таких жестких условиях, иногда бывают очень сложными и не удивительно, что полученные результаты в ряде случаев интерпретировались неправильно. Более того, многие механизмы реакций, которые рассматриваются в этом обзоре, следует считать предположительными, поскольку только в последнее время были предприняты систематические исследования реакций органических соединений в сильнощелочных средах. Можно, однако, надеяться, что эти гипотезы все же окажутся полезными как в отношении установления связи между большей частью имеющихся факторов, так и в отношении интерпретации полученных новых результатов. [c.234]


    В данной главе сначала будут сравнительно подробно рассмотрены способы установления строения природных соединений как классическим путем, так и с. применением современных методов исследования. Далее в целях иллюстрации будут рассмотрены два довольно тесно связанных класса природных соединений — терпены и стероиды. Наконец, будут обсуждены некоторые аспекты биогенетических превращений при синтезах, осуществляющихся в живых организмах. В ходе всего изложения мы будем стремиться к тому, чтобы показать, в какой мере материал, изложенный в предыдущих главах настоящей книги, связан с изучением природных соединений. [c.531]

    В гл. 1 (1, разд. 1-6,В) была приведена общая схема установления строения органических соединений, и в частности веществ природного происхождения. Теперь покажем более подробно, каким образом эти методы были применены при установлении строения важного душистого вещества цибетона. Установление структуры этого соединения, осуществленное Ружичкой в 1926 г., служит хорошим примером классического способа исследования строения. [c.531]

    Т. е. об электронном строении составляют представление главным образом по химическим свойствам. Данные физических методов исследования играют вспомогательную роль. А затем, опираясь на установленные или постулированные зависимости между строением и свойствами, уже возвращаются (что показано штрихованными стрелками) от строения к свойствам. Очевидно, что это — метод классической теории химического строения и притом, надо подчеркнуть, метод качественный. [c.352]

    Очевидно, что описанный метод установления зависимости по самому подходу к определению строения отличается от метода классической структурной теории и теории электронных смещений. Кроме того, этот метод отличается от их метода и тем, что он количественный по преимуществу, хотя огромное большинство расчетов электронного строения приводит к результатам, которые надежны не по абсолютным, а по своим относительным значениям. [c.352]

    В последние годы в химии природных соединений находят все более широкое применение физико-химические методы исследования. Применение этих методов наряду с классическими химическими методами позволяет быстро решать проблемы установления строения сложнейших природных объектов, таких как витамины, антибиотики, алкалоиды, стероиды и др. Однако в простых случаях применение одних физико-химических методов оказывается часто достаточным для установления структуры выделяемых из сырья природных объектов. [c.76]

    Характер проблемы. Исследования, проводившиеся для выяснения строения стеринов и желчных кислот, наталкивались на ряд противоречивых данных. Из установленных в настоящее время формул строения видно, что задача была чрезвычайно сложной, так как исследовались вещества очень сложного типа, не похожие на другие известные соединения. Синтез гидрированных полиядерных углеводородов, необходимых для сравнения с этими веществами, в то время еще не был разработан. Так как в холевой кислоте имеется не менее одиннадцати асимметрических атомов углерода, то число возможных стереоизомеров чрезвычайно велико. В совершенно чистом состоянии природные продукты часто хорошо кристаллизуются, но присутствие небольших количеств посторонних примесей может полностью исключить процесс кристаллизации. Так как большие молекулы создают особо благоприятные условия для протекания побочных реакций, то нужные продукты превращений приходится обычно выделять из реакционной массы путем повторных медленных кристаллизаций. Выходы при этом зачастую очень малы и затруднения, на которые натолкнулся Прегль при приготовлении одного из продуктов расщепления желчных кислот в количестве, достаточном для определения, привели к разработке его классических методов микроанализа. Эти методы оказали неоценимые услуги при дальнейших исследованиях как в этой, так и в других областях. Другим источником затруднений и задержек  [c.121]

    Классическая теория строения вместе с дополняющей ее стереохимией дала нам метод установления геометрических отношений между атомами в молекуле. При этом она позволила систематизировать огромный материал химии, т.е. явилась, таким образом, необходимым этапом в развитии этой науки. Впоследствии электронная теория количественно и точно доказала электростатическую природу электровалентной связи. Но гипотеза, выдвинутая этой теорией в отношении ковалентной связи, осуществляемой двумя электронами (хотя впоследствии и оказалась верной), слишком схематична и проста для количественной трактовки. Со временем выяснилось, что ковалентная связь является взаимодействием атомов при помощи электронов, единственным в своем роде без аналогий в классической макроскопической физике. Заслуга открытия пути количественного познания физического смысла явления ковалентности принадлежит квантовой механике. [c.56]

    Антрахинон можно превратить в антрацен путем энергичного гидрирования, например при помощи классического метода перегонки с цинковой пылью. В этой реакции, применяемой для установления строения, и в других сходных случаях от молекулы отщепляются атомы кислорода, причем получается основной углеводород. [c.356]

    По мнению В. М. Татевского, можно говорить не о редукции классической теории химического строения к квантовой механике, а лишь об установлении соответствия между этими теориями и их приближенными методами. [c.141]

    За рассеяние рентгеновских лучей, попадающих в кристалл, ответственны электроны атомов кристалла. Интенсивность дифракционных максимумов рассеяния определяется плотностью электронов в атомах тех кристаллических плоскостей, от которых происходит рассеяние. Расшифровывая картину дифракционных максимумов, кристаллографы устанавливают расстояние между плоскостями кристалла, степень их заполнения атомами, размеры элементарной ячейки и получают полное представление о структуре кристалла. Дифракция рентгеновских лучей позволяет исследовать не только такие кристаллические вещества, как различные соли, но также широко используется для установления областей кристалличности в полимерах, например в резине (растянутая резина более кристаллична, чем нерастянутая). Исследование с помощью дифракции рентгеновских лучей белков и других биохимически важных веществ принесло огромную пользу при установлении их строения. Классическим примером возможностей рентгеноструктурного метода является расшифровка с его помощью строения столь сложного вещества, как дезоксирибонуклеиновая кислота (см. гл. 28). [c.176]

    Кислые мукогюлисахариды в соединительной ткани связаны с белка- ми (см. стр. 602), поэтому для их выделения, как правило, проводят предварительное разрушение белков протеолитическими ферментами или расщепление углевод-белковых связей щелочами, после чего полисахариды экстрагируют растворами солей . Белки, также переходящие при этом в раствор, удаляют с помощью денатурирования. Смеси мукополисахаридов можно разделить на компоненты фракционированным осаждением спиртом в виде солей с различными катионами , но лучшие результаты дает фракционированное осаждение цетавлоном или ионообменная хроматография . Особенности химического поведения мукополисахаридов сделали чрезвычайно сложной задачу установления их строения. Даже идентификация моносахаридов после полного кислотного гидролиза (обычно одна из самых простых операций) является в мукополисахаридах трудной проблемой. Наличие в одной молекуле уроновых кислот и аминосахаров приводит к тому, что полисахариды гидролизуются лишь в жестких условиях, при которых освобождающиеся уроновые кислоты подвергаются интенсивному разрушению. Поэтому в последнее время работу по установлению строения этих веществ проводят на модифицированных полисахаридах, в которых сульфатные группы удалены, а все карбоксильные группы уроновых кислот восстановлены в первичноспиртовые. Ряд других классических методов установления строения полисахаридов применим к мукополисахаридам с трудом это относится к перйодат ному окислению, вызывающему разрушение остатков уроновых кислот вследствие сверхокисления, к метилированию, в применении которого успехи достигнуты сравнительно недавно. Основными методами, позволившими выяснить строение мукополисахаридов, послужили методы частичного гидролиза и частичного ферментативного расщепления. [c.541]

    Альгиновые кислоты. Альгиновые кислоты — главный структурный компонент клеточных стенок бурых водорослей (Laminaria, Ma ro istis и Fu us). При полном их гидролизе получаются D-манну-роновая и L-гулуроновая кислоты. Классические методы установления строения (метилирование, периодатное окисление) привели к заключению, что альгиновые кислоты представляют собой линейные поли- [c.159]

    КИ, периодический закон и основанная па нем периодическая система элементов Д. И. Менделеева. Главной задачей Н. х. является установление строения химических элементов, изучение состава и свойств соединений в связи со строением, установление строения молекул. Другая важнейшая задача Н. х.— разработка и научное обоснование способов создания новых материалов с нужными для современной техники свойствами. Одним из основных направлений Н. х. в XX в. явилось изучение химии комплексных соединений, а также изучение соединений, в которых атомы проявляют [ алентность, не подчиняющуюся классическим представлениям,— гидридов, карбидов, нитридов, боридов, карбонилов и др. В Н. X. широко применяются два основных метода химического исследования — синтез и анализ. Всего к середине XX в. было изучено около 00 тыс. неорганических соединений. Новый этап в развитии И. х. наметился в последние годы в связи с развитием ядерных исследований, новой техники, требующей новых материалов с нужными для современной техники свойствами. [c.173]

    Классические опыты по установлению строения методом расщепления на фрагменты показали, что соединение является мопо-метиловым эфиром кверцетинового гликозида, и ему была приписана формула СХХП1 (R = остаток рамнозы) [208]. [c.131]

    Применение инфрагфасных спектров в структурных исследованиях. Тш ательный анализ инфракрасных спектров оказался полезным при установлении строения многих сложных природных продуктов. Однако классическим и наиболее поучительным примером применения этого метода являются доводы, использованные для установления строения патулина — метаболита с антибиотическим действием, имеющего довольно простое строение. [c.633]

    Для установления формул химического строения простейших неорганических соединений необходимо было такое же последовательное проведение принципов классической теории химического строения, какое имело место в органической химии. Но как раз эта последовательность в применении к более сложным неорганическим соединениям, известным тогда под названием молекулярных, а позднее комплексных, оказалась несостоятельной. Как мы уже говорили в первом разделе, для объяснения существования веществ, не возможных с точки зрения учения о постоянной атомности, Кекуле выдвинул гипотезу, что они представляют собой относительно лабильные соприлегания настоящих химических молекул. Однако вскоре обнаружилось, что эти соединения по всем своим физическим и химическим признакам подобны атомным соединениям , хотя и отличаются иногда некоторым своеобразием. Именно для молекулярных соединений известны были многочисленные случаи изомерии, которые требовали своего объяснения, как это было раньше в органической химии. Молекулярные соединения часто обладают настолько прочнылш связями, что на них, так же как на органические соединения, можно было распространить принцип наименьшего изменения строения во время реакций. Это делало возможным изучение их методами, вырабо-таннылш в органической химии. [c.226]

    Крайне важное значение в химическом анализе азокрасителя имеет определение азогруппы. Для производственных испытаний существует стандартный метод, однако во многих публикуемых работах по азосоединениям он довольно часто игнорируется, вероятно, из-за того, что использование раствора титановой соли, подверженной окислению воздухом, требует применения специальной аппаратуры. Были исследованы другие методы определения азосвязи, основанные на ее окислении стабильными растворами, но они часто не имеют преимущества по сравнению с классическим. Один из таких способов основан на определении азота, выделяющегося при окислении азокрасителя бихроматом калия [49, 50]. Однако он также требует применения сложной аппаратуры. В другом используется реакция обесцвечивания азосоединения сульфатом церия [50]. Недостаток этого способа заключается в том, что больщая часть исследованных азокрасителеЙ не подвергается количественному окислению. Был также предложен простой, быстрый и точный метод определения сульфогрупп в анионном красителе [51], который включает в себя добавление к анализируемому веществу стандартного раствора солянокислой соли бензидина, удаление нерастворимой бензидиновой соли красителя и титрование избытка бензидина в фильтрате. Для установления строения сульфированных азокрасителей большое значение продолжает иметь элементарный анализ и расщепление азосвязи гидросульфитом натрия с последующей идентификацией образующихся аминов. В случае нерастворимых в воде и катионных красителей эти методы в значительной степени подкреплены современными методами, в частности масс-спектрометрией, с помощью которой можно однозначно получить значение молекулярного веса и элементарный состав, а также ЯМР-спектроскопйей, которая дает ценную информацию о протонах, присутствующих в молекуле. [c.1908]

    Из предыдущего подраздела этой главы следует, что в настоящее время общий характер построения полимерной цепи нуклеиновых кислот и главная форма свяэи в ней достаточно выяснены и коавенно подтверждены неспецифическим синтезом полимера. Иными словами, в химии нуклеотидов достигнут тот уровень, который в химии белка и пептидов знаменовался установлением пептидной связи как главной формы связи в белке. Однако в настоящее время химия пептидов пошла в своем развитии гораздо дальше, так как были развиты методы, позволяющие устанавливать последовательность отдельных мономеров (аминокислот) в гетерополимерной молекуле пептида. Эти методы, основанные на ступенчатой деструкции пептидов, позволили, как известно, установить строение многих простых и более сложных пептидов (в том смысле, в каком понимается термин строение в классической органической химии). [c.251]


Смотреть страницы где упоминается термин Классические методы установления строения: [c.70]    [c.345]    [c.142]    [c.3]    [c.4]    [c.282]    [c.252]   
Смотреть главы в:

Общая органическая химия Т.9 -> Классические методы установления строения




ПОИСК





Смотрите так же термины и статьи:

Классические

Методы установления строения



© 2025 chem21.info Реклама на сайте