Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия молярная

    Свойства системы можно подразделить на две группы экстенсивные и интенсивные. Экстенсивные свойства пропорциональны массе системы. Если массу системы удвоить, то и экстенсивные свойства соответственно увеличатся вдвое. К экстенсивным свойствам можно отнести внутреннюю энергию системы, ее объем, теплоемкость, энтропию и т. п. Интенсивные свойства, например температура, давление, молярная теплоемкость, молярный объем и др, не зависят от массы системы. [c.184]


    Для идеального газа эта внутренняя энергия, Е, совпадает со средней молярной кинетической энергией, о которой говорилось в гл. 1 Внутренняя энергия идеального газа прямо пропорциональна его температуре [c.18]

    Это уравнение позволяет, зная молярную свободную энергию идеального газа G при парциальном давлении р,, вычислить его молярную свободную энергию Оз при парциальном давлении Рз- Хотя уравнение (16-17) выведено для обратимого перехода от состояния с парциальным давлением Р] к состоянию с парциальным давлением Рз, оно в равной мере применимо и к необратимым процессам, поскольку свободная энергия, G, является функцией состояния и ее изменения не зависят от способа перехода из состояния 1 в состояние 2. [c.76]

    Это и есть стандартное изменение свободной энергии в реакции, относящейся к чистым веществам (ц,= р."г, если = 1) при нормальном состоянии К (ж ) —константа равновесия, выраженная в молярных долях. Для идеального газа мы можем связать К (с ) и К (Р1) с К (х ), используя К (х1) и соотношения, вытекающие из законов для идеального газа /> = х Р (Р— общее давление) j= /У = Р1/НТ = х Р/НТ = где V — общий объем К (/),)= К (х ) РД" и К (с ) = К (x ) УД", где Ап — изменение числа молей в реакции. Таким образом, [c.242]

    Основываясь на уравнении (4.1), можно оценить влияние кривизны поверхности на молярную свободную энергию вещества. Обычно ее связывают с давлением насыщенных паров жидкости по уравнению Кельвина [c.189]

    Система поддерживается соответствующей подсистемой физико-химических свойств. Каждая модель может обращаться за необходимыми свойствами к этой подсистеме. Набор свойств компонентов достаточно широк — он включает до 200 наименований (энтальпия, энтропия, свободная энергия, молярный объем, вязкость, коэффициент фугитивности). Свойства могут быть рассчитаны для чистых компонентов, смесей или компонентов в смеси. Передача данных в программу производится под управлением монитора. Для этого ему сообщается соответствующая информация в виде кодов, указывающих, например, основные свойства, наличие компонентов в смеси, температуру, давление состав и место расположения этих данных в памяти ЭВМ, доступной программам. Монитор вызывается однажды и рассчитывает все необходимые свойства. Методы, с помощью которых рассчитываются свойства, задаются пользователем на входном языке системы. Полное определение всех основных программ для расчета свойств производится с помощью набора операций для всей технологической схемы или для отдельных блоков. Пользователь имеет возможность создавать новые наборы программ или изменять существующие. Имеется четыре уровня определения наборов данных для расчета свойств, отличающиеся сложностью для пользователя. Одни из них не [c.421]


    Какое значение имеют вышеприведенные утверждения для проблемы формирования структуры Равенства и неравенства (2.30) — (2.32) касаются только внутренних дел открытой системы и никак не затрагивают ее внешних сношений . Внутренняя энергия, молярное число и энтропия открытой системы могут как увеличиваться, так и уменьшаться, не нарушая этим законов термодинамики. [c.26]

    Производство 1 г белка требует около 17 кДж энергии. Молярная масса белка альбумина около 69 ООО г/моль. Сколько молей АТФ должно прореагировать для образования 1 моля альбумина  [c.463]

    На рис. 16-8 изображен график зависимости молярной свободной энергии аммиака от его парциального давления. (Точнее, там указана молярная свободная энергия образования аммиака при различных давлениях из Hj и N2 в их стандартных состояниях.) Этот график представляет собой прямую линию, поскольку давление отложено в логарифмической шкале. Отношение парциального давления вещества к его парциальному давлению в стандартном состоянии принято для краткости называть активностью, обозначая ее буквой а  [c.77]

    Если энергия адсорбции сравнима по величине с энергией связей или молярной поверхностной энергией твердого тела (или превосходит их), это может вызвать существенное изменение структуры его поверхности. Отсюда следует, что поверхность металла в процессе хемосорбции подвергается структурной перестройке. [c.183]

    Парциальными молярными величинами могут быть объем, энтальпия, энтропия, энергии Гиббса и Гельмгольца  [c.163]

    Ранее вы уже видели, что температуры кипения углеводородов связаны с числом углеродных атомов в молекуле (т. е. с массой молекул и молярной массой). Имеется ли подобная связь в случае тепловой энергии  [c.203]

    Количество тепловой энергии, выделяющейся при сгорании определенного количества вещества, называется теплотой сгорания. Когда сгорает один моль вещества, то соответствующая величина называется молярной теплотой сгорания. Далее вы рассмотрите соотношение между количеством тепловой энергии, выделяющейся при сгорании углеводородов, и их молярными массами. Вы определите теплоту сгорания воска свечи и сравните ее с опубликованными данными по другим углеводородам. [c.203]

    Приближенные значения молярных теплот атомизации и энергии связей при 298 К [c.30]

    Еще один способ запасти энергию кокса в горючем газе заключается в пропускании сухого воздуха (20 об. % О2 и 80 об. % N2, что совпадает и с молярными концентрациями) над раскаленным коксом, в результате чего протекает реакция [c.41]

    Вернемся теперь к приведенным выше химическим примерам и дадим им объяснение, пользуясь данными о свободной энергии. Протекающая со взрывом реакция между Hj и lj характеризуется следующими молярными свободной энергией, энтальпией и энтропией реагентов и продуктов  [c.72]

    В табл. 18-1 сравниваются теплоты и энтропии испарения ряда распространенных жидкостей. Прежде всего можно заметить, что энтропии испарения всех жидкостей приблизительно одинаковы. Неупорядоченность, вносимая в систему из 6,022 -10 молекул, находящихся в тесном контакте в жидкости, когда их разъединяют при образовании пара из жидкости, сравнительно мало зависит от природы этих молекул. Это обобщение известно под названием правила Трутона, по имени ученого, который установил его эмпирически в XIX в. Наиболее высокие молярные энтропии испарения, превышающие молярные энтропии других веществ на 10-20 энтр. ед., имеют метанол, этанол и вода. Повышенные энтропии испарения этих веществ объясняются тем, что их полярные молекулы удерживаются в жидкости друг возле друга силами диполь-дипольного взаимодействия и водородными связями. Повышенная степень упорядоченности жидкости означает, что для образования из нее газа требуется внести несколько большую неупорядоченность. Поскольку для разъединения взаимодействующих молекул такой жидкости требуется больше энергии, теплота ис- [c.123]

    Таким образом, зная частоту колебания и коэффициент ангармоничности, можно рассчитать энергию химической связи. Уравнение (1,29) позволяет определить энергию разрьша одгюй химической связи. Если вычисленную энергию разрыва связи умножить на число Авогадро, то получим молярную энергию химической связи. [c.10]

    Допустим, что в стакане, изображенном на рис. 18-14, а, находится чистая вода, а в нее погружена расширяющаяся в нижней части трубка, закрытая снизу мембраной. В трубку налит водный раствор вещества А. Далее, предположим, что молекулы воды могут беспрепятственно проходить сквозь мембрану, но она не пропускает молекулы вещества А. Скорость просачивания молекул воды в трубку из раствора в стакане не зависит от наличия вещества А, но скорость поступления молекул воды обратно из трубки в стакан уменьшается из-за присутствия вещества А. Молярная свободная энергия, или способность к просачиванию, воды в трубке должна уменьшаться из-за присутствия частиц растворенного вещества по той же причине, которая уже известна нам по обсуждению других коллигативных свойств растворов. Поскольку в трубку просачивается больше воды, чем одновременно уходит из нее, раствор в трубке поднимается, как это изображено на рис. 18-14,6. [c.145]


    Знергия (изменение внутренней энергии), полученная или отданная в результате химической реакции, поскольку в большинстве случаев энергня проявляется в виде тепла молярную теплоту относят к количеству вешества, соответствующему уравнению реакции, и выражают в килокалориях на моль (ккал/моль). [c.64]

    Молярная энергия образования — молярная теплота образова- [c.66]

    Плотность углеводородных жидкостей. Плотность различных нефтей можно найти в стандартных таблицах. Однако, если нефть содержит значительное количество примесей с высокой упругостью паров (метан, этан, азот), то эти таблицы применять нельзя. Молекулы веществ, имеющих высокую упругость паров, обладают значительной кинетической энергией, которая влияет па плотность смеси. Для определения плотности жидких углеводородов с относительной молекулярной массой ниже 33, молярная доля азота, кислорода и изо-парафинов в которых менее 5%, моишо воспользоваться формулой, которая применима в интервале температур —(140+-184,4)° С, [c.37]

    Для растворов, объем которых при реакции меняется мало, вместо П1 и N1 лучше взять молярности и использовать условия равновесия не при постоянном давлении, а при постоянном объеме, когда равновесию соответствует экстремальное значение свободной энергии Гельмгольца. Условие равновесия, выраженное через концентрации и включающее множители Лагранжа, в этом случае также приводит к уравнениям ЗДМ. [c.25]

    Тепловой эффект хим. р-ции Молярная внутр. энергия, молярная энтальпия, хим. потенциал, хим. сродство, энергия активации Концентрация молекул. . . Концентрация массовая. . . Коикентрацня молярная. . .  [c.8]

    Для проведения расчета можно использовать модель раствора, предложенную Дебаем и Гюккелем, согласно которой каждый ион окружен ионной атмосферой со знаком заряда, противоположным заряду центрального иона. Так как сильные электролиты диссоциированы полностью (а = 1), то все изменения молярной электропроводности с концентрацией обусловлены изменением энергии взаимодействия. Тогда в бесконечно разбавленном растворе, где ионы настолько удалены друг от друга, что силы взаимодействия между ними уже не могут проявляться, ионная атмосфера не образуется, и раствор электролита ведет себя подобно идеальной газовой сн-сгсмс, В этих условиях молярная электропроводность электролита будет наибольшей и равной .  [c.121]

    Когда в гл. 3 молярная энергия Е одноатомного идеального газа определялась как сумма кинетической энергии индивидуальных молекул или как авогадрово число средних молекулярных энергий, молчаливо предполагалось, что Е является функцией состояния. Так ли это  [c.37]

    В уравнение Больцмана (16-5) входит важная физическая величина-число способов получения заданного состояния, Существует всего один способ упаковки идеального кристалла, при условии что молекулы неотличимы одна от другой и неподвижно упакованы среди своих соседей (последнее означает, что кристалл находится при температуре абсолютного нуля). Для идеального кристалла с неподвижными молекулами при О К И =1и5 = /с1п1=0. В отличие от этого существует множество эквивалентных способов построения 1 л определенного газа при заданных температуре и давлении. Нет никакой необходимости указывать индивидуальные положения молекул в газе и их индивидуальные скорости, для того чтобы газ соответствовал заданным условиям, ему достаточно иметь необходимое число молекул каждого сорта и необходимую молярную энергию все газы, удовлетворяющие этим условиям, должны казаться одинаковыми стороннему наблюдателю. Отсюда следует, что для любого газа величина IV очень велика, а значит, 1п И -положительное число и поэтому 5 = 1пИ больше нуля. Разумеется, даже идеальный кристалл должен обладать некоторой положительной энтропией, если он нагрет выше [c.56]

    Гипотеза электролитической диссоциации. В 1805 г. литовский ученый Ф. X. Гроттус, излагая свою теорию электролиза, высказал мнение, что частицы растворенных веществ состоят из положительной и отрицательной частей и под действием электрического поля закономерно, ориентируются, располагаясь цепочками, в которых положительнйя часть каждой частицы направлена к катоду, а отрицательная — ю, аноду. Под действием тока ближайг шие к электродам частицы разрываются и отдают соответствующие ионы электродам остающиеся части их вступают в обмен со следующими частицами. С теми или другими изменениями эти взгляды были общепринятыми до 80-х годов прошлого века. Н. Н. Каяндер установил (1881), что между химической активностью водных растворов кислот и их электропроводностью обнаруживается параллелизм. Он показал также, что кислоты обладают наибольшей химической активностью и наибольшей молярной электропроводностью в наиболее разбавленных растворах и что влияние природы растворителя и на химическую энергию тел и на электропроводность их растворов является аналогичным. Каяндер высказал предположение о возможности диссоциации молекул кислот в растворе, говоря, что в данном объеме раствора кислоты количество частиц, получивших способность обмена (назовем их хоть разомкнутыми частицами), пропорционально количеству прибавленного растворителя и что реагируют только такие разомкнутые частицы .  [c.381]


Смотреть страницы где упоминается термин Энергия молярная: [c.283]    [c.15]    [c.35]    [c.6]    [c.42]    [c.30]    [c.344]    [c.376]    [c.400]    [c.4]    [c.317]    [c.151]    [c.30]    [c.139]    [c.142]    [c.594]    [c.113]    [c.612]    [c.126]    [c.163]    [c.48]    [c.271]   
Современная общая химия Том 3 (1975) -- [ c.2 , c.406 ]

Современная общая химия (1975) -- [ c.2 , c.406 ]




ПОИСК





Смотрите так же термины и статьи:

Вычисление изотерм адсорбции растворенных веществ по уменьшению молярной стандартной энергии Гиббса—AG и растворимости

Изменение теплоты—29. Второй закон термодинамики—29. Изменение энтропии—31. Изменение свободной энергии и константа равновесия—32. Соотношение между изменениями теплоты и свободной энергии— 34. Термодинамика растворов — 38. Активность—39. Свободная энергия разбавления—40. Парциальные молярные величины—41. Свободная энергия образования и ее применение—42. Термодинамика в биологии

Молярная энергия когезии некоторых полимеров в различных растворителях

Молярная энергия когезии, влияние

Парциальная молярная свободная энергия химический потенциал

Парциальные молярные величины свободная энергия

Поливинилиденхлорид молярная энергия когезии

Поливиниловый спирт молярная энергия когезии

Поливинилхлорид молярная энергия когезии

Полиизобутилен молярная энергия когезии

Полиметилен молярная энергия когезии

Политетрафторэтилен молярная энергия когезии

Полиэтилентерефталат молярная энергия когезии

Свободная энергия изменение парциальная молярная

Свободная энергия парциальная молярная

Температура молярной энергии когезии

Энергия образования молярная

Энергия относительная интегральная молярная

Энергия относительная парциальная молярная

Энергия парциальная молярная

Энергия парциальная молярная испарения

Энергия парциальная молярная квантованная

Энергия парциальная молярная колебательная

Энергия парциальная молярная молекул

Энергия парциальная молярная образования

Энергия парциальная молярная потенциальная

Энергия парциальная молярная равновесная

Энергия парциальная молярная характеристическая

Энергия реакции молярная

Энергия удельная молярная



© 2025 chem21.info Реклама на сайте