Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиз теории

    В результате изучения процессов электролиза (в первой половине прошлого века) было выдвинуто предположение об электрической природе валентных сил (Берцелиус) и установлены различия валентности по знаку. Естественно было в соответствии с поведением элементов при электролизе приписать элементам, выделяющимся на аноде (кислород или хлор), отрицательный заряд в соединении и, следовательно, отрицательную валентность, а элементам, выделяющимся на катоде (водород, металлы), наоборот, положительный заряд и положительную валентность. Берцелиус настойчиво пытался распространить эти представления на все соединения. Однако такой подход к органическим соединениям большей частью не оправдывался, и в органической химии вместо этой дуалистической теории валентности была принята унитарная теория валентности, в основе которой лежало представление о постоянных валентностях, свойственных основным элементам органической химии — углероду (4), водороду (1), кислороду (2) и т. д. без различия знака, и только для азота пришлось допустить возможное различие валентности по величине (3 или 5). В частности, в конце 50-х годов XIX столетия в работах Кекуле, Кольбе и Купера было введено представление, что углерод обычно бывает четырехвалентным и что атомы его могут соединяться между собой образуя цепи. В конце 50-х и в начале 60-х годов XIX столетия А. М. Бутлеровым была создана структурная теория, способствовавшая дальнейшему быстрому развитию органической химии. Им было объяснено явление изомерии [c.55]


    Наиболее полно изложены теории растворов электролитов, равновесных электродных процессов, учение о кислотно-щелочных и окислительно-восстановительных равновесиях, об электролизе, теория двойного электрического слоя, принципы применения электрохимии в химическом анализе и других практических областях, современные методы электрохимических измерений. К книге приложены таблицы стандартных потенциалов и коэффициентов активности. [c.4]

    Рекомбинационная теория. Длительное время наибольшим признанием пользовалась рекомбинационная теория перенапряжения, выдвинутая Тафелем еще в 1905 г. Согласно этой теории, наиболее медленной является стадия молизации адсорбированного водорода, поэтому в процессе электролиза концентрация атомного водорода на поверхности увеличивается по сравнению с равновесной с молекулярным водородом (газ), что и приводит к сдвигу потенциала электрода в отрицательную сторону. [c.622]

    Эта теория может объяснить возникновение перенапряжения только при выделении газообразных продуктов электролиза. Теория же замедленного разряда может служить основанием при рассмотрении вопросов, связанных с перенапряжением для самого широкого круга электрохимических процессов, в том числе и для процессов электроосаждения металлов. [c.277]

    В учебном пособии Электролиз в гидрометаллургии изложены теория и практика электролитического получения металлов, начиная с наиболее распространенных и кончая рассеянными и редкими металлами. Особое место в теоретической части занимают анализ явлений совместного разряда катионов различ-ных металлов, кристаллизация металлов на катоде, а также явления на аноде. [c.7]

    Отдельные разделы книги посвящены описанию катодных и анодных процессов с участием органических веществ, электрохимическому синтезу элементорганических соединений, реакциям свободных радикалов, ионов и ион-радикалов, возникающих при электролизе, теории амальгамного восстановления и его препаративному использованию. [c.2]

    Электрохимия. Изучается взаимодействие электрических явлений и химических реакций (электролиз, химические источники электрического тока, теория электросинтеза). В электрохимию включают обычно учение о свойствах растворов электролитов, которое с равным правом можно отнести и к учению о растворах. [c.19]

    В книге даны некоторые (разделы электрохимии металлов, не получившие достаточного освещения в учебниках теоретической электрохимии. Изложены теория и практика электролитического получения меди, драгоценных металлов, свинца, сурьмы, олова, никеля, кобальта, железа, цинка, кадмия, марганца, хрома, некоторых редких и рассеянных металлов. Кратко описаны методы электролитического получения особо чистых метал-. лов и проектирования аппаратуры электролиза. Обращено внимание на вопросы снижения расхода электроэнергии, комплексное использование сырья и экономики производства. Приведены соображения о путях развития электролиза в гидрометаллургии Советского Союза. [c.2]


    Рассматривая второй за-кон электролиза с точки зрения электронной теории, нетрудно понять, почему при электролизе вещества выделяются в химически эквивалентных количествах. [c.299]

    Еще в начале прошлого века, излагая свою теорию электролиза, профессор Юрьевского (ныне Тартуского) университета Ф. И. Гротгус (1805) высказал мнение, что в растворе под действием тока растворенное вещество распадается на противоположно заряженные частишь, которые нейтрализуются на электродах. Позже Фарадей (1833) назвал подобные заряженные частицы ионами (от греч. ион — идущий). В 1878 г. петербургский профессор Р. Э. Ленц, исследуя электропроводность растворов, высказал предположение, что молекулы веществ уже при растворении могут распадаться на ионы. Все эти и подобные высказывания оставались предположениями и тогда, когда шведский ученый Аррениус (1887) занимался исследованиями электропроводности растворов. Закономерности в изменениях эквивалентной электропроводности с концентрацией указывали на то, что в растворе молекулы электролита, очевидно, распадаются на ионы. Из хода кривых на рис. 53 вытекает, что сначала распадается часть электролита, а по мере разбавления раствора диссоциация увеличивается, что и ведет к росту X. [c.164]

    Изучение перенапряжения прн электролитическом выделении водорода представляет значительный интерес для теории и практики. Найденные при этом закономерности могут служить в качестве исходных данных для обобщений в области электрохимической кинетики. Величина водородного перенапряжения и зависимость его от различных факторов учитываются при создании технологических электрохимических процессов. Например, при электролизе водных растворов солей цинка на катоде могут протекать реакции разряда ионов Zn ((pzn - ,zn = —0.76 В) и ионов Н" (в нейтральном растворе фн -,н, = —0,41 В). Вследствие высокого перенапряжения водорода на цинке потенциал его выделения сдвигается в сторону более отрицательных значений, благодаря чему возможно катодное осаждение металла с выходом по току 90—95%. [c.513]

    Рассмотрим электролиз водного раствора хлорной меди. Согласно теории электролитической диссоциации а растворе находятся ионы Си+ и 2С1 , которые под действием электрического тока направляются к соответствующим электродам  [c.210]

    Возникновение электрохимии как науки относится к рубежу XVni и XIX вв. и связано с работами Л. Гальвани, А. Вольта, В. В. Петрова, Г. Дэви. В 1833 г. М. Фарадеем были открыты законы электролиза — основные законы электрохимии. Теория электролитической диссоциации С. Аррениуса (1887) оказалась весьма плодотворной для развития учения о механизме электродных. процессов и прохождения тока через электролиты. В 1890 г. Нернстом предложена первая теория возникновения электродного потенциала, которая позднее была усовершенствована Л. В. Писаржевским,, Н. А. Изгарышевым, Герни. В XX столетии развивались теория растворов электролитов (работы П. Дебая, Э. Хюккеля, Л. Онза- [c.454]

    Одновременно с этим велись исследования и в области теории гальванических процессов. В 1833—1834 г. Фарадей (1791—1867) установил количественные законы электролиза и ввел специальную терминологию, сохранившуюся почти без изменений по сей день. В 1836 г. английский ученый и изобретатель Д. Ф. Даниэль (1790—1845) создал впервые устойчиво работающий гальванический источник электрического тока — элемент Даниэля , и с его помощью проводил наблюдения, позволившие вплотную подойти к разгадке теории гальванического элемента. [c.233]

    Мерой 2). д. является степень диссоциации растворенного вещества. Явление Э. д. открыто С. Аррениусом и сыграло большую роль в развитии науки Э. д. легла в основу современной электростатической теории химической связи с точки зрения Э. д. рассмотрен механизм электролиза и механизм возникновения электродных потенциалов и многое др. [c.290]

    Следующий шаг вперед был сделан В. В. Стендером с сотрудниками. Они воспользовались методикой подсчета, данной Бете и Тороповым, и подробно рассмотрели процесс электродиализа для системы, реально осуществлявшейся в трехкамерном электродиализе, а именно в средней камере — раствор соли, в анодной камере — р аствор кислоты, а в катодной — раствор щелочи. В. В. Стендер подразделял мембраны на изменяющие числа переноса ионов, которые он назвал электрохимически активные , и на не изменяющие числа переноса — электрохимически неактивные . Он рассмотрел процесс электродиализа с электрохимически неактивными мембранами в системе раствор кислоты I раствор соли раствор щелочи как простой электролиз, предположив, что в процессе электродиализа поры анодной мембраны пропитаны раствором кислоты из анодной камеры, а поры катодной — раствором щелочи из катодной камеры. А. В. Маркович объединил все эти положения, дополнил их и дал общую теорию процесса электродиализа, основывающуюся на соотношениях чисел переноса. А. В. Маркович разделяет мембраны, применяющиеся в электродиализе, на три группы. [c.171]

    Теорию Гейровского в дaльнeйшe существенно развил Гориучи с сотр. (1936). Согласно Гориучи, процесс электрохимической десорбции водорода при электролизе растворов кислот совершается следующим образом. Первой стадией является разряд гидроксо-ниевого иона и образование атома водорода, адсорбированного металлом Н—М  [c.407]


    В качестве примера кинетики электродных процессов рассмотрим теорию перенапряжения. В гл. X указывалось, что напряжение разложения при электролизе электролитов превышает равновесное значение э. д. с. соответствующего гальванического элемента на величину, называемую перенапряжением. Так, в частности, водород выделяется на различных металлических электродах с более или менее значительным перенапряжением. [c.397]

    Некоторые экспериментальные факты говорят в пользу рекомбинационной теории. Так, непосредственно наблюдалось наличие избыточного количества растворенного в железе водорода в опытах, в которых электролиз проводился с железным электродом, погруженным в раствор НаЗО . В этих опытах благодаря большой скорости диффузии водорода его присутствие в количествах, превышающих равновесную растворимость, обнаруживалось в глубине железа на некотором расстоянии от поверхности электрода. [c.399]

    Возникновение электрохимии как науки связано с именами Гальвани, Вольта и Петрова, которые на рубеже XVHI и XIX веков открыли и исследовали электрохимические (гальванические) элементы. Деви и Фарадей в первые десятилетия XIX века изучали электролиз. Быстрое развитие электрохимии в конце XIX века связано с появлением теории электролитической диссоциации Аррениуса (1887) и с работами Нернста по термодинамике электродных процессов. Теория Аррениуса развита Дебаем и Гюккелем (1923), которые разработали электростатическую теорию. [c.384]

    Гипотеза электролитической диссоциации. В 1805 г. литовский ученый Ф. X. Гроттус, излагая свою теорию электролиза, высказал мнение, что частицы растворенных веществ состоят из положительной и отрицательной частей и под действием электрического поля закономерно, ориентируются, располагаясь цепочками, в которых положительнйя часть каждой частицы направлена к катоду, а отрицательная — ю, аноду. Под действием тока ближайг шие к электродам частицы разрываются и отдают соответствующие ионы электродам остающиеся части их вступают в обмен со следующими частицами. С теми или другими изменениями эти взгляды были общепринятыми до 80-х годов прошлого века. Н. Н. Каяндер установил (1881), что между химической активностью водных растворов кислот и их электропроводностью обнаруживается параллелизм. Он показал также, что кислоты обладают наибольшей химической активностью и наибольшей молярной электропроводностью в наиболее разбавленных растворах и что влияние природы растворителя и на химическую энергию тел и на электропроводность их растворов является аналогичным. Каяндер высказал предположение о возможности диссоциации молекул кислот в растворе, говоря, что в данном объеме раствора кислоты количество частиц, получивших способность обмена (назовем их хоть разомкнутыми частицами), пропорционально количеству прибавленного растворителя и что реагируют только такие разомкнутые частицы .  [c.381]

    Основы электрохимии были заломсены исследованиями по гальваническим элементам, электролизу и переносу тока в электролитах. Гальвани и Вольта в Италии создали в 1799 г. гальванический элемент. В. В. Петров в России (1802) открыл явление электрической дуги. Т. Гротгус в России в 1805 г. заложил основы теории электролиза. В 1800 г. Дэви выдвинул электрохимическую теорию взаимодействия веществ он широко применил электролиз для химических исследований. М. Фарадей, ученик Дэви, в 1833—1834 гг. сформулировал количественные законы электролиза. Б. С. Якоби в России, решая вопросы практического использования процесса электролиза, открыл в 1836 г. гальванопластику. [c.7]

    Исключительное значение для обоснования электрохимического механизма коррозии имели работы выдающихся ученых Г.Дэви и М. Фарадея, установивших закон электролиза. Так, М. Фарадей предложил ва кнейшее для дальнейшего развития электрохимической теории коррозии соотношение между массой аноднорастворяющегося металла и количеством протекающего электричества, а также высказал (проверено Г. Дэви) предположение о пленочном механизме пассивности железа и электрохимической сущности процессов растворения металлов. В 1830 г. швейцарский физикохимик О. Де да Рив ч ко сформулировал представления об электрохимическом характере коррозии (он объяснил растворение цинка в кислоте действием микрогальванических элементов). Русский ученый H.H. Бекетов (1865 г.) исследовал явление вытеснения из раствора одних металлов другими, а Д.И. Менделеев (1869 г.) предложил периодический закон элементов, который имеет очень важное значение для оценки и классификации коррозионных свойств различных металлов. Важен вклад шведского физикохимика С. Аррениуса, сформулировавшего в 1887 г. теорию электролитической диссоциации и немецкого физикохимика В. Нернста, опубликовавшего в 1888 г. теорию электродных и диффузионных потенциалов. [c.4]

    Исследования такого рода получили широкое развитие в области электролитического выделения новой фазы на электродеподложке под влиянием пересыщения, задаваемого в этом случае перенапряжением. К сожалению, большинство этих работ относится к выделению новой фазы в виде кристаллов, а не капель, и проблема линейного натяжения пока что решена только для смачивающей капли. Единственные данные по электролитическому выделению новой фазы в виде капель связаны с электролизом растворов солей ртути на индифферентном электроде — на графите [17] или платине [18]. В указанных работах имеются и данные по смачиваемости ртутью электрода-подложки. Автор проанализировал эти данные с точки зрения линейного натяжения. Результат [19] показал, что сильно заниженные значения критического перенапряжения по сравнению с ожидаемыми, согласно теории Фольмера (не учитывающей х), могут быть объяснены линейным натяжением, если ему приписать отрицательный знак и абсолютное значение порядка Ю " дин. Это объяснение, однако, не однозначно, так как твердые поликристаллические подложки — графитовый или платиновый катоды — могут иметь микроскопические активные участки на поверхности с сильно повышенной смачиваемостью ртутью, что и без учета х привело бы к снижению критического перенапряжения. [c.276]

    Первыми работами в области технического электролиза расплавленных солей в нашей стране были работы П. П. Федотьева. Он является основателем Ленинградской школы электрохимиков, внесших существенный вклад в теорию и практику получения легких металлов (Ю, В. Ваймаков, П. В. Антипов, А. Г. Абрамов, В, М. Гуськов, В, П. Машовец, А. Ф. Алабышев, А. А. Костюков и др.). Капитальные работы в области технологии получения металлов электролизом расплавов были проведены во Всесоюзном алюминиево-магниевом институте (ВАМИ), [c.464]

    Магний впервые выделен химическим путем в 1828 г. и изучен (А. Бюсси, Франция). Его применение было весьма ограничено до тех пор, пока не был открыт электролитический способ его получения. Этот способ стал интенсивно разрабатываться в конце прошлого и начале нашего столетия. Значительный вклад в разработку теории и практики производства магния электролизом внесен отечественными учеными П. П. Федотьевым, Н. Н. Ворониным, Н. Ф. Антипиным, Ю. В. Баймаковым, А. Ф. Алабышевым и др. [c.505]

    Современная теория электрохимической кристаллизации дает возможность объяснить влияние природы металла, типа разряжающихся ионов и характера их электронных структур, состава раствора и наличия в нем поверхностно-активных веществ, пассивационных явлений, заряда поверхности, стадийности и числа присоединяемых электронов, водорода, природы растворителя, параметров электролиза (плотность тока, температура и т. п.) и других факторов на величину перенапряжения при выделении металлов х]м. В свою очередь, именно величина т]м определяет соотношение скоростей образования центров кристаллизации и их роста, что сказывается на мелкокристалличности получаемых осадков и равномерности их распределения по основе. [c.141]

    Рассматривая второй закон электролиза с точки зрения электронной теории, нетрудно понять, почему при электролизе вещества выделяются в химически эквивалентных количествах. Обратимся, например, к электролизу хлорида меди (II). При выделении меди из раствора каждый ион меди получает от катода два электрона, и в то же время два хлорид-иоиа отдают электроны аноду, превращаясь в атомы хлора. Следовательно, число выделившихся атомов меди всегда будет вдвое меньше числа выде.чившихся атомов хлора, т. е. массы меди и хлора будут относиться друг к другу, как их молярные массы эквивалентов. [c.285]

    Задача описания нелинейной диффузии очень сложна, и ни один из известных математических методов прямо неприложим к ее решению. Теория такого рода процессов предложена в последнее время только для стационарного дискового электрода мозаичного типа, т. е. впрессованного в бесконечную плоскость из неактивного материала (рйс. 4.5). Строгое решение удалось получить К. Аоки и Ж- Остер-Янг, которые применили к этой системе метод Винера Хопфа, обычно используемый для описания нелинейных процессов переноса тепла. Анализ показал,что для контролируемого диффузией процесса хроноамперометрическая кривая постепенно отклоняется от кривой, описываемой уравнением Котрелла для линейной диффузии, и приближается к кривой, характерной для сферической диффузии. В общем случае связь тока, текущего на мозаичный электрод со временем t), прошедшим от начала электролиза, выражается соотношением  [c.139]

    Резкий скачок в промышленном производстве А1 произошел в 80-х годах прошлого столетия, когда было технически освоено получение алюминия электролизом расплавленного раствора глинозема в криолите. Теория электрометаллургии была создана П. П. Фе-дотьевым. Отечественные ученые разработали метод получения глинозема нз нефелина. Глинозем — тугоплавкий материал, температура плавления чистого А1 0з 2072 °С, и для ее понижения добавляют преимущественно криолит Мал[А1Рг,1. При этом температура плавления понижается до 960 °С. Получение А ведут в специальных электрических печах. Продажный металл содержит примерно 99% А1. Главными примесями являются железо, кремний, титан, натрий, углерод, фториды и др. Для получения алюминия высокой степени чистоты его подвергают электролитическому рафинированию. Используют также процесс нагревания А1 в парах А1Рз (транспортную реакцию)  [c.271]

    Еще в начале прошлого века, излагая свою теорию электролиза, проф. Юрьевского (ныне Тартуского) университета Ф. И. Гротгус (1805) выска- [c.171]

    Ее сменила электрохимическая теория шведского ученого Берцелиуса (1810 г.). Согласно этой теории атом каждого элемента имеет два полюса — положительный и отрицательный, причем у одних атомов преобладает первый, у других второй. Соединение электроположительного магния с электроотрицательным кислородом с точки зрения теории Берцелиуса объяснялось притяжением преобладающих в них полюсов, имеющих противоположные знаки. Если просходит частичная компенсация зарядов, то продукт реакции не утратит их полностью. Этим объясняли образование сложных молекул (например, карбоната магния в результате соединения положительного MgO с отрицательным СОг). Теория Берцелиуса явилась развитием идей Дэви (1806 г.) о том, что химическая связь возникает благодаря взаимному притяжению разноименно заряженных тел. Электрохимическая теория, на первый взгляд, представляется правдоподобной и как будто подтверждается процессом электролиза электролиз как бы возвращает атомам полярность, утраченную ими при образовании соединения. Но при таком подходе, — писал по поводу теории Берцелиуса Гегель, — встречающиеся в химическом процессе изменения удельной тяжести, сцепления, фигуры, цвета и т.д., как равно кислотных, едких, щелочных и т. д. свойств, оставляются без внимания, и все исчезает в абстракции электричества. Пусть же перестанут упрекать философию в абстрагировании от частного и в пустых отвлеченностях , раз физики позволяют себе забыть о всех перечисленных свойствах телесности ради положительного и отрицательного электричества . Действительно, вскоре электрохимическая теория исчезла из научного обихода, ибо и существование прочных молекул, состоящих из атомов одинаковой полярности (например, Нг, и С1а), и осуществление (Дюма, 1834 г.) процессов, в которых разнополярные по теории Берцелиуса элементы заменяли друг друга в соединениях, оказались в непримиримом о ней противоречии. [c.103]

    Зависимость скорости алектродной реакции от потенциала электрода. Задачи теории электрохимической кинетики сводятся к установлению характера зависимости скорости электрохимического превращения I от потенциала электрода ф или перенапряжения Т1. Искомая зависимость определяется механизмом электродного процесса. Обратная задача состоит в установлении механизма путем анализа зависимости скорости от условий проведения электролиза и налагаемого электродного потенциала. [c.304]

    Предложенная Томсоном модель могла объяснить многие экспериментальные факты, известные к тому времени и которые атомно-молекулярная теория, основанная на неделимости атома, объяснить не могла — явления, происходящие в разрядной трубке, электролиз и др. Однако модель Томсона имела большой недостаток, объяснить который он не мог — почему, собственно атом существует, если он построен согласно такой модели Покоящиеся (или колеблющиеся- возле положений равновесия в атоме) электроны и положительно зарям енная сфера должны были бы действовать друс [c.32]


Библиография для Электролиз теории: [c.45]    [c.469]   
Смотреть страницы где упоминается термин Электролиз теории: [c.120]    [c.109]    [c.201]    [c.252]    [c.57]    [c.528]    [c.220]    [c.221]    [c.464]   
Методы получения особо чистых неорганических веществ (1969) -- [ c.376 ]




ПОИСК





Смотрите так же термины и статьи:

К теории электролиза на вращающемся дисковом электроде

Расплавы, электролиз теория

Теория полной диссоциации электролиза

Теория процесса электролиза

Теория электролиза поваренной соли

Теория электролиза с использованием кривых сила тока —потенциал

Теория электролиза с учетом движения ионов и молекул в растворе

Упрощенная теория электролиза

Хлористый кальций, электролиз расплава теория процесса

Электролиз теория с использованием кривых

Электрохимические теории и законы электролиза



© 2024 chem21.info Реклама на сайте