Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калий алюминием и железом

    Алюминий Железо Кадмий. Калий Кальций Магний. Марганец Медь. . Натрий Николь Платина Ртуть Свинец. Серебро. Хром. . Цинк. .  [c.15]

    Загрязнение почвы влияет на ее плодородие. Плодородие почвы определяется содержанием минеральных веществ кремния, алюминия, железа, калия, кальция, магния, фосфора, серы, молибдена, бора, фтора и др. [c.8]


    В лаборатории остались неподписанными банки с гидроксидами магния, калия, алюминия, железа. Как без помощи других реактивов установить содержимое каждой банки  [c.274]

    В растворе, получающемся при разложении фосфатного сырья фосфорной кислотой, могут содержаться, кроме монокальцийфосфата, также фосфаты натрия, калия, алюминия, железа и магния в количестве, зависящем от содержания минеральных примесей в исходных фосфатах и от условий их растворения. [c.288]

    Элементарный состав сухого активного ила (в %) С 44—75,8 Н 5—8,2 О 12,5—43,2 N 3,3—9,8 5 0,9—2,7. Минеральная часть ила содержит соединения кремния, алюминия, железа, кальция, магния, калия, натрия, цинка, никеля, хрома и др. [c.564]

    В отличие от продуктов взаимодействия природных фосфатов с серной и фосфорной кислотами. при разложении минеральных примесей природных фосфатов азотной кислотой в раствор переходят хорошо растворимые азотнокислые соли натрия, калия, алюминия, железа, церия, кальция и,магния  [c.397]

    Железо-ториевый шлам перерабатывают следующим образом шлам обрабатывают раствором сериой кислоты и хлористого калия, причем образуется труднорастворимая двойная соль —сульфат тория и калия, а железо и алюминий переходят в раствор. Чтобы полностью очистить эту двойную соль, содержащую еще некоторое количество железа, к отфильтрованному осадку приливают раствор соды. При этом образуется двойная растворимая соль — карбонат тория и натрия, а железо выпадает в осадок. Торий затем осаждается из двойной соли в виде карбоната серной кислотой. Осадок растворяют в азотной кислоте и переводят в нитрат тория. [c.85]

    В природной воде могут присутствовать в растворенном виде многие газы, например Оа, N2, СО2, H2S и т. д., и растворимые соли. натрия, калия, кальция, аммония, магния, алюминия, железа, марганца и т. д. [c.118]

    В качестве катализатора используется губчатое железо, активированное окисями калия, алюминия и другими веществами. [c.143]

    Калий принадлежит к очень распространенным элементам. По содержанию в земной коре (в среднем около 2,4% [98, 103]) он уступает только кислороду, кремнию, алюминию, железу, кальцию и натрию. В почвах находится 1—3,6% калия [102, 434, 466, 467]. Калий входит в состав всех растительных и животных организмов [101]. Содержание калия в растениях достигает 1—2% по весу [101]. В золе растений находится до 35—50% поташа [235, 466, 467]. [c.5]

    Электролиз — процесс, обратный процессу в гальваническом элементе с металлическим электродом. Минимальное напряжение для электролиза раствора соли определяется по таблице электродных потенциалов. Для осуществления процесса электролиза на электроды следует подать напряжение, несколько большее, чем э. д. с. гальванического элемента. При разряде катионов на катоде в первую очередь будут разряжаться те ионы, у которых. .. (наименьшее, наибольшее) положительное и. .. отрицательное значение потенциала. В растворе находятся катионы (С=1 г-ион/л) натрия, калия, алюминия, золота, серебра, меди, железа, кадмия. На электролизер подано напряжение 3 в. Какова теоретически последовательность осаждения металлов (См. табл. 3.4) [c.126]


    По мере извлечения питательных веществ растениями почвенный раствор должен пополняться ими. Как происходит этот процесс Азот почвы почти целиком входит в недоступные расте-тениям органические соединения. Основная масса фосфора входит в состав нерастворимых в воде неорганических соединений (фосфаты алюминия, железа и др.) и органических соединений. В почвах содержится много соединений серы, калия, магния, микроэлементов. Но лишь малая часть их находится в доступных усвоению растениями формах. [c.75]

    Алюминнй Железо Калий Кальций Кобальт Кремний Магний Марганец Медь [c.617]

    Максимальное Алюминий Железо Кальций Калий Кобальт Литий Марганец Медь Натрий Никель Олово Рубидий Свинец Серебро Сурьма X ром [c.631]

    Зола топлива состоит в основном из кремнезема, окисей алюминия, железа, кальция и небольших количеств окиси магния. На долю этих соединений приходится свыше 95% золы твердого топлива. Остальное занимают окислы натрия и калия, пятиокись фосфора, хлорокись титана и др. [c.18]

    В патентной и технической литературе указывается на множество попыток ускорить процесс окисления сырья и придать определенные свойства окисленному битуму, применяя окислители, катализаторы и инициаторы. Так, в качестве окислителей предложено применять кислород, озон, серу, хлор, бром, иод, селен, теллур, азотную и серную кислоты, марганцовокислый калий и др. В качестве катализаторов окислительно-восстановительных реакций — соли соляной кислоты и металлов переменной валентности (железа, меди, олова, титана и др.) в качестве катализаторов алкилирования, дегидратации, крекинга (переносчика протонов) предложены хлориды алюминия, железа, олова, пятиокиси фосфора и т. п. в качестве инициаторов окисления — перекиси и др. Большинство из них инициирует реакции уплотнения молекул сырья в асфальтены, не обогащая битумы кислородом. [c.157]

    Если роданид калия содержит железо, то к его раствору добавляют несколько миллиграммов какой-либо соли алюминия, осаждают гидроокись алюминия добавлением нескольких капель аммиака, оставляют стоять на 1—2 дня и сливают сифоном раствор осадка. [c.65]

    При гравиметрическом определении суммы ш елочных металлов в минералах и рудах микрохимическим методом навеску разлагают фтористоводородной кислотой для удаления кремневой кислоты [19]. Остаток фторидов нагревают с щавелевой кислотой, которая при высокой температуре вытесняет фтор. Образовавшиеся оксалаты металлов прокаливают при 800° С. При этом большинство металлов образует оксиды, а щелочноземельные элементы, магний и щелочные металлы — карбонаты. При обработке прокаленного остатка горячей водой в раствор переходят карбонаты щелочных металлов, гидроксид магния и небольшое количество карбонатов щелочноземельных элементов. Если образец содержит большие количества алюминия, железа и хрома, последние при прокаливании могут образовать алюминаты, ферраты и хромиты. Для их разложения раствор с осадком нагревают на водяной бане и после охлаждения обрабатывают насыщенным раствором карбоната аммония. Небольшое количество катионов, главным образом магния, оставшихся в растворе, осаждают 8-оксихинолином. Осадок отфильтровывают, раствор упаривают досуха и остаток прокаливают. Полученные карбонаты щелочных металлов переводят в сульфаты, которые взвешивают. Умножая на фактор пересчета, находят сумму оксидов лития, натрия, калия, рубидия и цезия. [c.57]

    Минеральные примеси твердого минерального топлива представляют собой сложную смесь, в состав которой входят самые разнообразные вещества. В большинстве случаев основу их составляют силикаты (алюминия, железа, кальция, магния, натрия и калия), среди них видное место занимают глины. Весьма часто в минеральную массу топлива входят сульфиды железа, карбонаты кальция, магния и железа сульфаты кальция и железа закись железа, окислы других металлов в виде солей органических кислот,, фосфаты ( последние два в особенности в торфах и бурых углях), хлориды и, т. д. Для минеральных примесей твердого топлива раститель- [c.84]

    При анализе глин, гранитоидов и других силикатных пород с различным содержанием основных компонентов кремния, алюминия, железа, кальция и магния и содержанием натрия от 0,5 до нескольких десятков процентов установлено, что кинетика испарения натрия из пробы в дуге переменного тока 5 А, положение градуировочных графиков и точность определения не зависят от валового состава пробы [89]. Не обнаружено также взаимного влияния натрия и калия. При относительно малом содержании щелочных металлов в состав буфера вводят карбонат лития, оксид меди и угольный порошок. При определении натрия в силикатах с содержанием щелочных металлов свыше 8% применяют метод ширины спектральных линий. [c.99]


    Земная кора сложена горными породами, состоящими в основном из восьми элементов - кислорода, кремния, алюминия, железа, кальция, магния, натрия и калия. [c.44]

    Вследствие заметной растворимости пикрата калия определение дает результаты, заниженные на 2—5% [2309]. В присутствии больших количеств солей натрия могут получаться завышенные результаты для калия. Определению мешает присутствие солей рубидия, цезия, одновалентного таллия, больших количеств аммония, осаждаемых пикриновой кислотой. Не мешают соли магния, кальция, алюминия, железа и других элементов. [c.52]

    Применяют следующие окислители галогены, азотную кислоту, перманганат калия, бихромат калия, двуокись свинца, перекись водорода, персульфат аммония, хлорную кислоту, азотистую кислоту, окись серебра, перйодаты. Применяют и восстановители свободные металлы (цинк, алюминий, железо, ртуть), сернистую кислоту, сероводород, соли двухвалентного олова, перекись водорода, соли двухвалентного хрома, гидразин, гидроксиламин, аскорбиновую кислоту, борогидрид натрия, амальгаммы металлов. [c.106]

    Основными элементами, образующими органическую массу топлива, являются углерод, водород, кислород, азот и сера (в виде органических соединений). Минеральная часть в основном состоит из силикатов алюминия, железа, кальция, магния с включениями соединений серы, фосфора, натрия, калия и редких элементов. [c.171]

    Элементный состав осадков изменяется в широких пределах. В частности, в сухом веществе осадков первичных отстойников содержится, % 35-88 С 4,5-8,7 Н 0,2-2,7 8 1,8-8 Ы 7,6-35,4 О. Сухое вещество активного ила имеет, % 44-76 С 5-8 Н 0,9-2,7 8 3,3-9,8 12,5-43,2 О (Туровский). В осадках присутствуют также соединения кремния алюминия, железа, кальция, магния, калия, натрия, цинка, хрома, никеля и др. [c.339]

    Материалы с высоким содержанием глинозема следует сплавлять с пиросульфатом калия. Алюминий, железо, кальций и магний определяют комплексометричес-ки (см. стр. 35), натрий и калий — на пламенном фотометре, сульфатную серу — ионообменным методом, сульфидную — или по разности между содержанием общей серы и сульфатной, или прямым методом разложения навески соляной кислотой. [c.98]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]

    Фосфориты месторождения Каратау являются основным сырьем для производства фосфора. Кроме основного вещества общей формулы ЗСаз(Р04)2-СаХ2 (где X — фтор, хлор или гидроксил), они содержат натрий, калий, алюминий, железо и другие элементы в виде углекислых и сернокислых солей, обуславливающих состав загрязнений печного газа, а затем фосфора и сточных вод. В качестве восстановителя фосфора используют кокс, в качестве флюса — кварцит. [c.5]

    Ассортимент минеральных солей, используемых в сельском хозяйстве, промьнилениости и быту, составляет сотни наименований и непрерывно растет. Масштабы добычи и выработки солей чрезвычайно велики некоторые минеральные соли и удобрения являются многотоннажными продуктами химической промышленности, и их добыча и производство выражаются в миллионах, а иногда и десятках миллионов то[гн в год. В наибольших количествах вырабатывают и потребляют соединения натрия, фосфора, калия, азота, алюминия, железа, меди, серы, хлора, фтора, хрома, бария и др. [c.139]

    В названиях двойных солей названия всех катионов ставятся в родительном падеже и соединяются дефисом, например KA SOJj— сульфат калия-алюминия, (NH Fe(S04)2 — сульфат аммония-железа (II), NH4Fe(S04)j—сульфат аммония-железа (III). [c.39]

    АЬ(504)з-1<2504 сульфат калия-алюминия, Ре2(504)з-(НН4)2504 сульфат аммония-железа (III), Ре2(504)з-К2504 сульфат калия-железа [c.85]

    В настоящее время получены сведения о средней распространенности всех химических элементов в литосфере— верхней части земной коры толщиной 16 км см. табл. 2), морской воде и атмосфере. На рис. 23 приведена диаграмма, показывающая неравномерность распространения 50 основных элементов в земной коре. Несмотря на чрезвычайное разнообразие пород и минералов, все они состоят главным образом всего из нескольких химических элементов — кислорода, кремния, алюминия, железа, кальщ я, магния, натрия, калия и некоторых других. Наиболее распространенный элемент в литосфере — кислород на его долю приходится около 50% веса всей литосферы примерно 26% составляет кремний, 7—8 % — алюминий и около 4 % — железо. Суммарное содержание магния, кальция, калия и натрия немногим превышает 10%. На долю остальных элементов (более восьмидесяти) приходится несколько процентов. [c.70]

    Ф. М. Шемякин). Хроматограмму получают в стеклянной колонке диаметром 6 мм и длиной ПО мм. Окись алнэминия (сорбент) предварительно прокаливают при 800—850 С три часа. После охлаждения просеиванием отбирают фракцию от 0,08 до 0,04 мм К Колонку заполняют сухим адсорбентом и промывают 0,1 н. раствором щелочи. Затем исследуемый раствор металла или сплава пропускают через колонку и проявляют полосы соответствующими реаге )тами. Например, железо (III) обнаруживают железистосинеродистым калием, алюминий— ализарином С или алюминоном, никель (II) — диметилглиоксимом, свинец (II) — хроматом калия, пропуская их растворы через колонку. Таким образом, можно маркировать металлы или сплавы, сравнивая полученные хроматограммы с хроматограммами стандартных сплавов. [c.144]

    Ряд патентов, не раскрывая химизма процесса, указывает на возможность ускорения окисления сырья и улучшения свойств битума. Так, для получения битума, имеющего более высокую пенетрацию при данной температуре размягчения, применяют следующие катализаторы и инициаторы окисления сырья кислородом воздуха двуокись марганца [488] хлорид алюминия [463] двуокись марганца и азотную кислоту [437] мелкораздробленный известняк [528] каустическую соду или углекислый натрий [348] бентонит или мелкоизмельченный кокс [315] серу [293] серную кислоту с добавлением металлических солей серной или борной кислот [388] металлические фторобораты [361] борную, фосфорную или мышьяковистую кислоты [406] пятиокнсь фосфора и его сульфиды (РгЗз, Р45з, Р45 ) [492] смесь пятиокиси фосфора и сополимеров изобутилена и стирола, смесь орто-фосфорной кислоты и борофтористого соединения [270] хлорат калия [479] хлорид или сульфат цинка, алюминия, железа, меди или сурьмы [306] хлорид цинка или [c.157]

    Основной химический компонент магмы — кремнезем. Небольшие количества алюминия, железа, магния, кальция, натрия и калия в виде оксидов, а также вода соединяются с кремнеземом в столь сложные соединения, что их невозможно описать простыми химическими формулами. При охлаждении магмы происходит их последовательная кристаллизация, в результате которой из расплава удаляются наиболее тугоплавкие соединения, оставляя в нем более легкоплавкие вещества и воду. При этом не образуется эвтектик, как бывает при кристаллизации простых расплавов, а возникает последовательность ионных замещений или обменов, что представляет собой важнейшее отличие геохимических процессов. В качестве примера укажем, какие замещения могут происходить в минералах, называемых амфиболами, которые содержат кремнекислородную структурную единицу 8140ц. [c.444]

    В результате переработки поллуцита, литиевых и калиевых мийералов, радиоактивных отходов, рапы соляных озер и рассо- лов морского типа получаются рубидиево-цезиевые, цезиево-рубидиевые и рубидиево-калиевые концентраты в виде квасцов, хлоридов, сульфатов, карбонатов, нитратов и других солей рубидия и цезия. Такие концентраты содержат примеси калия, натрия, магния, кальция, кремния, алюминия, железа, хрома, титана и др. [c.334]

    Отделение калия от алюминия, железа, цнн ка, марганца, магния и других элементов. Отделение осуществляется осаждением калия в виде хлоронлати ната [1841] нли осаждением посторонних катионов 8-оксихино лином [1426] или пиридином [382, 383] [c.137]

    Химический состав сухого вещества осадков колеблется в широких пределах. Сухое вещество сырьк осадков имеегг следующий состав (% массы сухого вещества осадка) 35,4—87,8 С, 4,5—8,7 Н, 0,2—2,7 8,1,8—8 К, 7,6—35,4 О сухое вещество активного ила содержит, % 44,0—75,8 С. 5—8,2 Н, 0,9—2,7 8,3,3—9,8 N. 12,5-43,2 О. В осадках содержатся соединения кремния, алюминия, железа, оксидов кальция, магния, калия, натрия, цинка, никеля, хрома и др. (см. табл. 8.1), а также ряд других соединений и микроэлементов. [c.259]

    Осаждение гексанитрокобальтатов может быть использовано для отделения рубидия и цезия вместе с калием от лития, щелочноземельных металлов, алюминия, железа и марганца [459]. Для этого в исходный раствор, подкисленный уксусной кислотой и охлажденный до 10°С, приливают избыток осадителя (на каждый г МеС1 требуется 200 мл осадителя). Для приготовления осадителя 28,6 г нитрата кобальта растворяют в 500 мл воды, содержащей 50 мл ледяной уксусной кислоты, и к полученному раствору добавляют раствор 180 г NaNOj в 500 мл воды. [c.156]

    Отщепление галоидоводорода от дигалоидопроизводных бутана в производственных процессах облегчается присутствием водяного пара или хлоридов различных металлов. Пары 2,3-дибромбутана превращаются в бутадиен в присутствии хлористого бария при 340—360 или в присутствии извести при 430—450° [27]. Расплавленные хлориды металлов (хлориды цинка, алюминия, калия, натрия, железа и висмута) отщепляют галоидоводород от дихлорбутана при 400 —600° [28]. Видоизменением этого метода является, одновременное пропускание паров к-бутана и хлора через расплавленные хлориды металлов при 175—300°, причем сразу получается бутадиен [5]. Водяной пар и фосфорная кислота или разбавленная соляная кислота вызывают отщепление галоидоводорода от дихлорбутана при 500—650° и нормальном давлении [29, 30]. [c.35]


Смотреть страницы где упоминается термин Калий алюминием и железом: [c.2]    [c.343]    [c.29]    [c.235]    [c.349]    [c.34]    [c.88]    [c.280]    [c.164]   
Успехи химии фтора (1964) -- [ c.102 ]

Успехи химии фтора Тома 1 2 (1964) -- [ c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Железо алюминии

Железо калий



© 2025 chem21.info Реклама на сайте