Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа взаимодействия лиганд фермент

    Пусть ферментативная реакция протекает с образованием п -(- 1 ферментных комплексов EXi, включая свободный фермент, т. е. I = О, 1,. .., п. Сопоставим с каждым комплексом узел графа I, I и т. д., а с каждой стадией взаимодействия — две противоположно направленные ветви, если стадия обратима, или одну направленную ветвь, если стадия необратима. Каждую ветвь охарактеризуем ее величиной— вероятностью осуществления данной стадии равной константе скорости кц или константе кц, умноженной на концентрацию лиганда в стадиях взаимодействия фермента с лигандом. Скорость стадии Vij вдоль ветви I / равна [c.462]


    Кь—константа равновесия взаимодействия лиганд — фермент на стадиях сорбции [определяется уравнением [c.35]

    Измерение констант скорости инактивации Са—АТФазы НБД-хло-ридом в присутствии разных концентраций лигандов (например, АТФ или АДФ) проводят, как описано выше. Расчет значений /С д возможен по схеме реакции инактивации, согласно которой с ингибитором может взаимодействовать фермент, свободный от лиганда (схема справедлива в случае Са—АТФазы и НБД-хлорида)  [c.363]

    Взаимодействующие системы- могут быть исследованы количественно также с помощью аналитической ультрацентрифуги, если за связыванием лиганда можно проследить с помощью абсорбционной оптической системы [105, 107]. На рис. 9 представлены седиментационные диаграммы серии опытов с различными смесями НАД-Н (ДПМ-Н) лактатдегидрогеназы. Диаграмма, относящаяся к раствору НАД-Н (слева), показывает, что весь материал, поглощающий свет при длине волны 340 нм, мигрирует медленно, тогда как после добавления фермента часть или весь кофермент, в зависимости от концентрации фермента, седиментирует с тем же коэффициентом седиментации, что и нативный фермент. Из распределения поглощения света в кювете ультрацентрифуги в процессе седиментации можно рассчитать концентрацию связанного и свободного кофермента на основе этих данных рассчитывается среднее число связанных с ферментом молекул кофермента и по уравнению (3)—число связывающих, участков и константы диссоциации. [c.409]

    Перечислите основные исторические этапы изучения лиганд-рецепторного взаимодействия. 2. Дайте определение понятиям рецептор , лиганд , аффинность . 3. С помощью схемы опишите лиганд-рецепторное взаимодействие. 4. Получите уравнение, связывающее концентрацию ли-ганд-рецепторных комплексов с временем реакции лиганд-рецептор . 5. Какими уравнениями описываются процессы ассоциации и диссоциации лиганд-рецепторных комплексов Почему 6. Какова раз.мерность констант скоростей ассоциации и диссоциации, равновесной константы диссоциации Каковы наиболее часто встречаемые значения этих констант 7. Как можно определить константу скорости ассоциации и диссоциации 8. Как можно определить концентрацию рецепторов и их аффинность 9. Выведите уравнение Скэтчарда. 10. Каковы современные представления о структуре и функции рецепторов 11. Что такое принцип структурной комплиментарности 12. Сравните фермент-субстратное и лиганд-рецепторное взаимодействие. 13. Можно ли определить концентрацию рецепторов и их аффинность исходя из кинетических исследований 14. Всегда ли совпадают величины констант диссоциации, вычисленные по тангенсу угла наклона в координатах Скэтчарда и вычисленные как отношение констант скоростей диссоциации и ассоциации 15. Какие типы рецепторов вы знаете По какому принципу называются рецепторы 16. Дайте определение понятиям агонист и антагонист . [c.354]


    Более подробно вопросы определения констант скоростей и порядков обратимых реакций рассмотрены в главах 2, 3 (кинетика фермент-субстратного и лиганд-рецепторного взаимодействия). [c.40]

    Из всего изложенного следует, что даже столь грубая оценка величины АОвнутр позволяет прийти к выводу, что силы взаимодействия между поверхностным слоем ферментной глобулы и органическими молекулами или ионами вполне могут перекрыть (особенно при многоточечном взаимодействии фермент—лиганд) энтропийные потери, обусловленные необходимым сближением комплексующих агентов (ДСсближ)- Эксперимент подтверждает это представление, поскольку комплексообразование низкомолекулярных лигандов с белками характеризуется весьма высокими значениями констант ассоциации порядка 10 —10 л/моль [30] (см. гл. VH), что соответствует величине АОассоц. равной примерно — (3 — 7) ккал/моль или — —(12,6—29,4) кДж/моль. [c.29]

    Шульман н сотр. [ИЗ—115] исследовали активный центр карбоксипептидазы А путем измерения релаксации малых молекул, связанных с этим ферментом. Карбоксипептидаза является протео-литическим металлсодержащим ферментом, который катализирует расщепление С-концевой пептидной связи в пептидах и белках. Она имеет молекулярную массу 34600 и содержит 1 атом цинка на молекулу, который обусловливает каталитическую активность, но фермент остается активным при замене 20 + на ионы Мп + или Со2+ [116]. Кристаллическая структура фермента известна [117, 118]. С атомом металла координированы три белковых лиганда, и имеются свободные положения по меньшей мере еще для двух лигандов. Связывание растворителя (НгО) [ИЗ], ингибиторов [114] или фторид-иона [115] на активном центре Мп2+-фермента влияет на релаксацию связанных ядер не только потому, что белок имеет длинное время корреляции, но также вследствие наличия парамагнитного иона металла. Уширение резонансных сигналов растворителя было объяснено тем, что одна молекула воды связывается с ионом Мп2+. Как следует из измерения уширения пиков метильных или метиленовых протонов конкурирующих ингибиторов — индо-лилуксусной, г/7ег-бутилуксусной, бромуксусной и метоюсиуксус-ной кислот — и одновременного определения времен корреляции взаимодействия протонов ингибитора с металлом, релаксация определяется главным образом временем обмена комплекса белок — ингибитор. Используя известные константы Михаэлиса — Ментен и эти данные, можно определить константы скорости всех отдельных стадий реакции фермента с субстратом. [c.393]

    Против уравнений, выведенных Данном и Чейкеном [6], Николь и др. [12] высказали возражения. Данн и Чейкен [7] ограничились случаями, когда [Е]//Сь мало, т. е. используется очень низкая концентрация фермента. Другое ограничение касается взаимодействий со слишком низкими Кь- Например, если константа связывания равна 10 моль/л, то рассчитанная константа скорости диссоциации комплекса ЕЬ должна быть очень мала ( 0,042 С ) [7]. Следовательно, элюирование белка должно зависеть от кинетических факторов и не может быть проведено за реальное время опыта. Добавление растворимого лиганда к раствору элюента не должно оказывать влияния на элюирование белка, поскольку диссоциация — мономолекулярный процесс. Такими кинетическими эффектами объясняются наблюдаемые иногда неудачи при элюировании некоторых ферментов с аффинных сорбентов буферными растворами, содержащими сильные ингибиторы. В некоторых случаях белковый ник настолько уширяется, что его нельзя обнаружить. Метод пригоден главным образом для случаев, когда доступны сорбенты, содержащие лиганды со средней силой связывания. В таких случаях система полностью обратима в пределах времени проведения хроматографического опыта. [c.49]

    Удивительное сходство между параметрами спектров ЭПР ряда тиоловых комплексов Мо(У) [28] и молибдофлавопротеидных ферментов (табл. 23) дает один из наиболее убедительных аргументов в пользу того, что молибден в ферментах связывается с серусодержащими лигандами. Октаэдрические комплексы Мо(У) с лигандами, отличными от сульфгидрильных групп, не дают сигналов ЭПР с -факторами, превышающими 1,95, или константами сверхтонкого взаимодействия менее 4,7 мТ. При делокализации неспаренного электрона по орбиталям сульфгидрильных лигандов константы сверхтонкого взаимодействия уменьшаются, а -факторы увеличиваются и приближаются к -фактору свободного электрона. Вследствие такого сходства в параметрах спектров ЭПР молибденсодержащих ферментов и комплексов с серусодержащими лигандами последние были предметом детальных исследований методом ЭПР как модели ферментов (гл. 15). [c.272]

    СТИ пользу в качественной оценке, во-первых, доступности иона металла для растворителя и, во-вторых, того, какую из трех возможных ролей, описанных в разд. 1, выполняет ион металла в ферментативной реакции. Как установлено Кон [21], фактор усиления (ei) протонов воды для бинарного комплекса Е — М + (еь) может быть больше, чем ei для тройного комплекса Е — М + — лиганд (тип II) (вс). И наоборот, ферменты, образующие комплексы Е — лиганд — M + (тип I), проявляют небольшое взаимодействие фермент — ион металла (либо вообще его не проявляют) и имеют величину Ес> ь 1,0, в то время как в комплексах М.2+ — Е — лиганд (тип III) лиганд может оказывать небольшое влияние на окружение иона металла и еь 8с. Хотя эти закономерности наблюдались для большинства комплексов типов I и II [21], известны исключения. Изучением скоростей релаксации протонов субстрата в присутствии Мп + — фермента для ФДП-альдолазы из дрожжей доказано существование мостиковых комплексов Е — Мп + — субстрат (разд. 9), хотя и наблюдались небольшие изменения для ei протонов воды при образовании этих комплексов (т. е. еь Вс)- Следовательно, хотя сравнение величины ei протонов воды для бинарных и тройных комплексов фермента, металла и лиганда дает простой и быстрый метод определения типа образующегося комплекса, однако эти результаты должны рассматриваться как предварительные и подтверждаться с помощью других методов, например определением г и Ajh (константы сверхто-ного взаимодействия) путем измерения скоростей релаксации магнитного ядра лиганда. Быстрый метод определения констант диссоциации комплексов дает также наблюдение за изменениями ei протонов воды при взаимодействии фермента с Мп2+ и лигандом [21]. [c.456]


    В современной литературе вопросам функционирования олигомерных ферментов уделяется большое внимание. Уже в работах Кошланда, на основе концепции конформационной подвижности белков [53], развитой в принцип индуцированного соответствия , предложена модель работы олигомерных ферментов [104]. При этом используется идея о глобальной передаче конформационных изменений путем межсубъединичных взаимодействий. Модель Кошланда и др. основана на следующих постулатах в отсутствие лиганда белок существует в одной конформации лиганд, связываясь с субъединицей белка, вызывает в ней конформационное изменение, которое может передаваться на соседнюю субъединицу. Для описания связывания необходимо вводить столько констант, сколько существует центров связывания. В некоторых случаях это усложняет интерпретацию наблюдаемых экспериментальных данных. Однако, в принципе, аксиоматика этой модели такова, что кинетика практически любых олигомерных ферментов, для которых справедливо допущение о квазиравновесном связывании субстрата , может быть описана на ее основе. В зависимости от количества субъединиц и схемы взаимодействия между ними, модель допускает спектр состояний как лишенных симметрии, так и имеющих симметрию более низкого порядка по сравнению с максимальной, наблюдаемой у свободного фермента. [c.105]

    Процент связывания глицерокиназы с N -(6-аминогексил)-5 -АМР-сефарозой уменьшается при значениях pH>7,0 кажущаяся константа р/С 8. Кроме того, прочность связывания фермента с иммобилизованным лигандом совпадает с соответствующей рН-зависимостью. Уменьшение связывания при изменении pH наблюдалось при взаимодействии лактатдегидрогеназы с 6-aминoгeк aнoил-NAD- eфapoзoй. В идентичных условиях в исследованной области pH бычий сывороточный альбумин не проявлял сродства к этому адсорбенту. [c.110]

    На рис. 4 представлены результаты, полученные при элюировании зон нуклеазы стафилококков с pdTpAp-сефарозы при различных концентрациях растворимого конкурентного лиганда [3]. Линейность зависимости 1/(У—Уо) от [L] отражает 1 1-природу взаимодействия фермент — нуклеотид эта зависимость может быть использована для расчета констант диссоциации / l и /Сс с использованием моновалентных моделей [уравнение (2)]. Рассчитанные константы приведены в табл. 1 там же приведены результаты для двух других конкурентных лигандов. [c.234]

    В этой связи необходимо отметить следующее. Возможность выявления случая реакционной способности половины связывающих центров зависит от того, известна ли концентрация центров связывания на ферменте, что в свою очередь зависит от точности определения концентрации белка и чистоты препарата. Негомогенный препарат, содержащий молекулы, обладающие разным сродством к лиганду, дает кривую связывания такого же вида, как и в случае отрицательной кооперативности, что может привести к ошибочному выводу о наличии взаимодействия между субъединицами. Еще одна ситуация, которую можно ошибочно интерпретировать как случай реакционной способности половины связывающих центров, имеет место в реакциях, катализируемых лактатдегидрогеназой, и обсуждается в гл. 12 из-за неблагоприятной константы равновесия между E.NAD+.La и E.NADH.Pyr не происходит полного накопления ферментсодержащего промежуточного соединения E.NADH.Pyr [схема (12.9)]. [c.261]

    Главным вопросом является участие определенных аминокислотных остатков каталазы в реакциях со свободными радикалами, что приводит к постепенной потере каталитической функции фермента. Величина эффективной суммарной константы скорости взаимодействия каталазы с радикалами НО равна 1.4 х 10 М" с [22], т.е. превышает частоту соударений двух частиц в жидкой фазе и свидетельствует о том, что молекула каталазы атакуется одновременно несколькими радикалами по многим реакционноспособным аминокислотным остаткам. На основании ренгеност-руктурного анализа каталазы печени быка идентифицированы Туг-357 в качестве проксимального лиганда гема, а также важные для каталитического акта аминокислотные остатки с дистальной стороны гема Н15-74, А8П-147, Р11е-152 и РЬе-160 [c.168]


Смотреть страницы где упоминается термин Константа взаимодействия лиганд фермент: [c.21]    [c.246]    [c.246]    [c.44]    [c.225]    [c.504]    [c.232]    [c.141]    [c.45]    [c.66]    [c.159]    [c.164]    [c.278]    [c.215]    [c.453]    [c.272]    [c.195]    [c.155]   
Аффинная хроматография (1980) -- [ c.21 , c.30 , c.34 , c.45 , c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Константа ферментов



© 2025 chem21.info Реклама на сайте