Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан использование

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    В последнее время в отечественной практике сжижения природного газа и за рубежом находят применение однопоточные каскадные циклы. Особенностью этих циклов является использование в качестве хладагента жидкости, конденсирующейся из сжижаемого природного газа. В состав хладагента входят метан, этан, пропан. Соотношение компонентов смеси поддерживается таким, чтобы парциальная конденсация на любой из ступеней была эквивалентна потребности в холоде на следующей ступени. Благодаря этому, создается необходимый тепловой баланс процесса. [c.133]

    Методика предусматривает для разделения неуглеводородных компонентов и низкокипящих углеводородов (водород, кислород, азот, окись углерода, метан и этан) использование молекулярных сит типа 10-Х и 13-Х, а для разделения углеводородов Сз — С5 — трепела Зикеевского карьера, модифицированного вазелиновым маслом. [c.254]

    Сжиженный газ и газовый бензин образуют так называемые газоконденсатные жидкости, которые в настоящее время играют важную роль в нефтедобывающих странах. В данном труде рассматривается лишь использование этих продуктов в качестве исходного сырья для производства химических продуктов. Непрерывно растет, особенно в последние годы, значение этана, выделяемого из природных газов. Раньше после извлечения газового бензина и сжиженных газов из газоконденсата этан вместе с метаном как неконденсирующиеся компоненты поступал в сеть топливного газа. [c.21]

    Бензиновые двигатели автомобилей легко переделать под двойное топливо бензин или сжатый природный газ. Баллон со сжатым природным газом, в основном метаном, удобно размещается в багажнике автомашины. Одной заправки хватает примерно на 250 миль. В США сейчас около 30 ООО автомашин используют сжатый природный газ, в странах бывшего Советского Союза — около полумиллиона машин на газовом топливе. Использование природного газа — экологически относительно чистого топлива — одно из стратегических направлений решения проблемы нефтяных ресурсов. [c.228]

    На большинстве заводов применяется и второй вид топлива — природный газ, главная составная часть которого — метан. Использование дешевого природного газа позволяет уменьшить расход более дорогого кокса на 10—20%, Воздух, необходимый для окисления углерода, поступает нагретым до 700—800° С и даже до 1000— 1200° С под избыточным давлением 1,5—2 ат и даже до 3,5 ат (в последнее время). На многих заводах воздух перед подачей обогащают, вводя в него кислород до содержания 26—27% по объему, и увлажняют. В 1969 г. с использованием природного газа выплавлено 85 % всего чугуна. [c.173]


    Развитие процессов нефтехимического синтеза связано с широким использованием природных промышленных газов. Предельные углеводороды — метан, этан, нронан, бутан, изобутан, пентан применяют в качестве топлива, а также сырья для получения непредельных углеводородов (путем крекинга и пиролиза). Непредельные углеводороды в свою очередь являются сырьем для получения синтетических материалов. В промышленных масштабах перерабатываются газы этилен, пропилен, бутилены, дивинил, изонрен, ацетилен. [c.233]

    Производство карбида кальция термической реакцией между коксом и окисью кальция имеет широкое распространение. Так, в 1965 г. для этих целей потреблялось более 2 500 ООО т кокса во всем мире, из которых, вероятно, от 800 до 900 тыс. т в странах Западной Европы. Но не следует ожидать развития производства карбида кальция в ближайшие годы. Основной областью его применения является производство ацетилена, себестоимость которого по этому методу оценивается во Франции немногим больше 1000 франков/т. Во многих случаях ацетилен может быть заменен этиленом, который более экономичен. Кроме того, для производства ацетилена с карбидным процессом конкурируют другие процессы, принцип которых — пиролиз таких углеводородов, как метан, этап и легкие бензины. Этот пиролиз может происходить при внешнем обогреве, частичном сгорании или под действием электрического тока в форме дуги или разряда. Эти процессы обычно дают смеси ацетилена и этилена, пригодные для использования. Нельзя сказать, что эти процессы были хорошо отработаны и надежны к 1967 г., но можно надеяться, что многие из них позволят получать ацетилен с ценой менее 0,80 франков/кг в связи с этим будет ограничена замена его на этилен. [c.221]

    Паровую каталитическую конверсию природного газа при средней температуре и среднем или высоком давлении применяют в очень крупном промышленном масштабе. Основными направлениями усовершенствования режимов использования катализаторов в этих условиях является снижение удельного расхода пара на конверсию углеводородного сырья (см. табл. 14). На промышленных установках первичной конверсии метана мольное соотношение пар метан доходит до четырех. Как следует из табл. 14, это соотношение может быть уменьшено более чем в два раза, что существенно сократит затраты на производство аммиака и метанола. [c.36]

    При использовании метана в качестве сырья стоимость кислорода составляет около 27% стоимости производства, а при использовании бензина — 19%. С другой стороны, количество получаемого водяного газа (СО + На) заметно больше (около двух вес. ч. водяного газа на одну вес. ч. ацетилена) в первом случае (сырье —метан). Но при использовании бензина образуется большое количество этилена. [c.115]

    Использование метана лишено этого недостатка, а также требует меньшего объема аппаратуры при одинаковой производительности. Например, для производства 50 т Sa в сутки из древесного угля необходимы И электронагревательных печей при работе на метане требуются только 2 реактора. Осуществить контроль и автоматизацию процесса в случае применения метана также значительно проще. [c.226]

    В качестве метода дальнейшего снижения потерь этилена предлагается на верхние тарелки колонны вводить относительно нелетучий компонент, который позволяет снизить летучесть этилена по отношению к метану и тем самым способствует снижению потерь этилена. В качестве такого компонента в ХТС производства этилена может быть использован пропан. На рис. 1У-22 представлена схема № 8, в которой перед последним холодильником на линии потока питания Т4 введен поток пропана. [c.186]

    Широкое использование природного газа в качестве топлива породило проблему компенсации пиковых нагрузок — суточных и сезонных. Высокая экономическая эффективность применения сжижепиого газа для этих целей вызвала рост их производства. Сжижению стали подвергаться природные газы разнообразного состава вплоть до метана. Это потребовало применения криогенных температур. Теперь термин сжиженный углеводородный газ стал неоднозначным для его конкретизации используются термины жидкий пропан , жидкий пропан-бутан , сжиженный метан , сжиженный природный газ (СПГ) . В состав СП Г могут входить углеводородные компоненты от метана до бутана, иногда до пентана включительно. Здесь следует заметить, что углеводороды тяжелее пропана затвердевают при температурах выше—160 °С, чт(J может вызвать осложнения в [ци -цессе сжижения. [c.203]

    Рис, 117, Относительная стоимость охлаждения С [76] при использовании различных хладагентов (—40° С — пропан —101,1° С — этилен —156,7° С — метан —195,6° С — азот —251,1° С — водород —268,9° С — гелий) [c.195]

    Таким образом, водород со многих точек зрения может быть признан вполне пригодным для применения в качестве топлива. К тому же он может быть использован как химическое сырье, восстановительный реагент и топливо для генерации электричества в топливных элементах, что позволит заменить метан и ускорить применение водорода в качестве заменителя ЗПГ даже до того, как иссякнет или станет недопустимо дорогим ископаемое топливо. [c.234]


    Вещества, подобные "перманентным" газам и находящиеся в жидком виде, часто называют "криогенными веществами". Из этих криогенных веществ наиболее важным с точки зрения основных опасностей химических производств является сжиженный природный газ (СПГ), состоящий главным образом из метана, но содержащий также небольшие количества углеводородов с двумя и более атомами углерода в молекуле. Атмосферные газы, такие, как азот или кислород, также попадают в категорию веществ, у которых критическая температура значительно ниже окружающей. Для веществ из этой категории технология перемещения и хранения основывается на применении высококачественной термоизоляции с использованием, как правило, вакуумных оболочек. Отметим, что содержать метан, кислород или азот в жидкой фазе посредством охлаждения трудно, так как это можно сделать только при наличии еще более холодных жидкостей. Образующиеся при неизбежном выкипании пары можно либо сразу использовать, либо снова сжижить для дальнейшего хранения, либо просто выбросить в атмосферу. [c.72]

    Для инициирования реакции окисления метана применяются также гомологи метана [84, 85], озон [86], атомарный водород [87], нитрометан [88], хлористый нитрозил и хлористый нитрил [89]. электроразряд [90], фотохимические средства воздействия [91] и т. д. Все перечисленные способы инициирования дороги и сложны, а эффективность средств воздействия незначительна (выход до 2% СНоО на пропущенный метан). Так, при использовании углеводородов наблюдается разветвленность процесса с образованием большого числа различных продуктов, что требует сложных и дорогостоящих процессов разделения полученной смеси. Окислы азота оказывают коррозионное воздействие на аппаратуру, а малейшие следы окислов в конечном продукте — СНаО — являются нежелательными примесями, от которых освобождаются тщательной и дорогостоящей очисткой с применением ионообменных смол. [c.166]

    Для селективного выделения Oj и HjS из смесей газов, содержащих в основном метан, в промышленном масштабе используют только полимерные мембраны или мембраны на основе блок-сополимеров. Перспективным вариантом этого процесса является мембранный катализ использование квази-жидких мембран, на поверхности которых материал мембраны (для СОз и HjS это щелочи или соли щелочных металлов) обратимо взаимодействует с выделяемым компонентом, облегчая [c.74]

    В процессе предварительного захолаживания с использованием холода дросселированной метановой фракции производится отбор основного водородного потока, который затем проходит тонкую очистку. Пирогаз после выделения водорода направляется в деметанизатор, где оставшийся водород и метан отделяются от этана, этилена и более тяжелых углеводородов. Кубовой продукт деметанизатора поступает в деэтанизатор, с верха которого отбирается фракция Сз. К ней добавляется водород, и смесь подается в реактор гидрирования ацетилена. После этого фракция Сз проходит осушку и направляется в этиленовую колонну, с верха которой отбирается этилен, а снизу этан, возвращаемый на пиролиз. [c.104]

    Промышленные способы получения сероуглерода из природного газа (метана) и сероводорода разработаны в США фирмой Пур Ойл Компани. Использование реакции сероводорода с метаном особенно целесообразно в тех случаях, когда природный газ уже содержит достаточное количество сероводорода, как, например, газ месторождения Лакк во Франции, где содержание сероводорода достигает 15%. [c.147]

    Носители также влияют на селективность процесса. Например, на цеолите o dA образуется до 90-100 % пропилена, тогда как в случае цеолита СоА и o dY в основном образуется метан. Использование СО-Н5ВМ-5 позволяет селективно получать парафины. [c.717]

    Основной продукт разделения составляет азото-водородная смесь, годная для синтеза аммиака и состоящая из 75% водорода и 25% азота. Из 1 678 коксогвого газа и 290 м азота получается 979 м азото-водородной смеси. При данном составе газа из 780 водорода использовано для получения азото-водородвой смеси 734 м . Коэффициент извлечения водорода составляет 94,8% по отношению к водороду. Потери объясняются тем, что часть водорода (около 25 м ) растворяется в жидком метане. Использование азота менее благоприятно и значительная часть его (около 50%) теряется с остаточным газом. [c.346]

    Приведённые цифры свидетельствуют о неудобствах, возникающих при применении газообразного метана в качестве моторного топлива. Значительная часть неудобств и затруднений отпадает с переходом на >йндкий метан, использование которого, применительно к тракторному парку, мыслится следующим образом. На тракторе устанавливается танк ёмкостью 150—160 л (диаметр шара 650 мм) с соответствующей арматурой. Танк монтируется на специальной железной площадке, укрепляемой на тракторе. Вес всей конструкции не превышает 200 кг. [c.51]

    При воздействии фтористого водорода на четыреххлористый углерод в присутствии фтористой сурьмы как катализатора получают дихлордифтор-метан, кипящий при —30°, не горючий и лишь мало ядовитый газ, обладаю-1ЦИЙ исключительными свойствами как хладагент. Представление о возможных путях использования четыроххлористого углерода дает рис. 62. [c.119]

    Для получения синтез-газа может быть успешно использован также метан природных газов, который превран ается в смесь окиси углерода и водо1рода или каталитически по уравнению СН4 + Н20 —> СО ЗН2, или неполным сжиганием в кислороде. Следовательно, удается из простейшего парафина — метана — получить его высокомолекулярные гомологи. В результате имеем наиболее четко выраженный процесс синтеза, в ходе которого сложные молекулы образуются из простейших составляющих компонентов. [c.70]

    Каскадное охлаждение основано на использовании соединенных последовательно нескольких парокомпрессионных машин с различными хладагентами, отличающимися по температуре кипения. Суть каскадного охлаждения состоит в том, что хладагент, сжижающийся при более высокой температуре, служит для конденсации паров труднее конденсируемого хладагента. Например, в стандартном каскадном цпкле сжижения природного газа обычно применяются три ступени. На первой в качестве хладагента используются пропан, фреон или аммиак, на второй — этан, этилен на третьей — метан, природный газ. [c.132]

    Для очистки сточных вод, содержащих органические соединения с БПК = 5- - 10 г/л, применяется анаэробный биохимический процесс в метантенках. Процесс наиболее полно протекает при 45—55°С без доступа воздуха (термофильное сбраживание). Часто метантенки исгюльзуют для обработки осадков из первичных и вторичных отстойников, после чего осадки легко фильтруются, отделяются и обезвреживаются. В результате распада органических соединений образуются метан, углекислый газ, водород, азот, сероводород, которые сжигают с использованием теплоты отходящих газов для обогрева метантенков. [c.496]

    Бон и Коуард [6] произвели крекинг этана при 800° С в присутствии водорода и получили выход метана 41%. В тех же самых условиях при использовании в качестве разбавителя азота выход метана снизился до 18%. Это дало повод Бону и Коуарду заключить, что метан образуется в результате гидрирования радикалов метила. Аналогично этану ведет себя этилен. Гарднер [27] установил, что разложение этана Ьодобно крекингу других углеводородов, так как в результате расщепления получаются олефин и парафин  [c.84]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    В десорбере второй ступени выделяется газовая фракция, содержащая больщое количество высших ацетиленовых углеводородов, из которых наиболее oпa ны t компонентом является диацетилен. Поэтому предпочитают газовую фракцию разбавлять каким-либо инерт иыл 13о I.. чапрпмер азото.м,. метано.м, или же паром. При использовании этой углеводородной фракции в качестве топливного газа целесообразно разбавлять ее горючим газо.м (метаном, синтез-газом). [c.105]

    Хлористый метан нолучажт с выходом в 90%. Использование хлористой медп, действующей как катализатор, позволяет увеличить этот выход др 97 %.  [c.411]

    В отучае того или иного экономически приемлемого технологического решения проблемы крэкинга или ожижения метана замкнется круг использования для синтетического получения нефти коксовальных газов, включаюпщх в качестве главных компонентой водород, окись углерода, олефины и метан и его гомологи. Это не может не отразиться благоприятным образом также на экоио- мических показателях нромышгаенного испоаьзования водорода, окиси угл е(рода и олефинов швель-газа и газа высокотемпературного коксо(вания. [c.436]

    Мембраны. Для селективного выделения СО2 и НгЗ из смесей газов, содержащих в основном метан, в промышленном масштабе опользуют только полимерные (асимметричные или композиционные, плоские или в виде полых волокон) мембраны. В табл. 8.8 представлены характеристики мембран, полученных из наиболее перспективных полимерных материалов, применяемых для этих целей (в том ч И Сле и для получения гелиевого концентрата). Как видно из таблицы, лучшим. комплексом свойств для выделения СО2 и НгЗ обладают плоские асимметричные мембраны из ацетата целлюлозы, ультратонкие (с толщиной селективного слоя до 200 А) мембраны из сополимера поликарбоната с полидиметилоилоксаном (МЕМ-079), а также полые волокна на основе ацетата целлюлозы и полые волокна из полисульфона с полиорганосилоксаном типа КМ Монсанто . Перспективным представляется использование для очистки газов от СО2 и НгЗ высокоселективной мембраны на основе блок-сополимера Серагель [56]. [c.286]

    Синтез ацетилена из метана (а также из смеси газов, содержащей метан) представляет собой один из примеров органического синтеза в электрическом разряде, осуществленного на практике в значительных масштабах и усношно конкурирующего с обычным, карбидным методом получения ацетилена. Для получения ацетиленл из метана применялись различные формы электрического разряда. Тпк как, однако, уже первые исследования показали, что и тихом разряде выход ацетилена ничтожно мал, то все дальнейшие попытки осуществления этой реакции с выходом jH , представляющим практический интерес, в основном были сосредоточены на использовании дугового разряда. (Литературу см. в [4, 41].) [c.181]

    Хотя химические превращения, которые будут обсуждены в настоящем разделе, не относятся к проблеме производства ЗПГ, некоторые вопросы конверсии окиси углерода в метан, являющиеся составной частью этих превращений, по нашему мнению, достаточно тесно связаны с основной темой нашей книги. Одна из главных проблем в использовании генерируемой в атомных реакторах тепловой энергии — трудность передачи ее на расстояние. Высокотемпературные атомные реакторы весьма громоздки, к тому же по соображениям техники безопасности они должны размещаться на достаточном удалении от других промышленных установок, предприятий и жилых районов. С технической точки зрения, тепловую энергию наиболее предпочтительно транспортировать в виде пара, горячей воды, электроэнергии или компрпми-рованного газа, однако при выборе наиболее подходящего способа передачи тепловой энергии необходимо учитывать тепловые потери, которые становятся весьма ощутимыми при передаче ее на большие расстояния. [c.228]

    В технологических процессах добычи и переработки различного сырья образуются газовоздушные смеси, содержащие в небольших количествах оксид углерода, метан и другие горючие вещества. Значительное количество этих газов выбрасывается в атмосферу. Использование их в качестве низкокалорийных топлив затруднено или невозможно, так как они не горят в факеле, а каталитическое сжигание с применением теплообменников не экономично. Часть таких слабоконцентрировапных газов, содержащих различные органические вещества, все же обезвреживается, но тепло окисления при этом ие утилизируется. В этой главе рассматривается нестационарный метод получения высоконотенциального тепла из таких слабоконцентрированных газов. [c.200]

    В качестве гомогенных инициаторов и катализаторов к настоящему времени испытано большое количество различных соединений. Наилучшие результаты (выход СНаО 2,6—3% па пропущенный метан) достигнуты при использовании в качестве 1 атализаторов окислов азота [80—83], которые вводятся в количествах от 0,1 до 1% к газовой смеси. Роль окислов азота сводится ч зарождению метильпого радикала по следующей реакции  [c.165]

    Очень часто метантенки используют для обработки осадков из первичных и вторичных отстойников биологических очистных сооружений. В результате анаэробного распада органических веществ образуются метан, углекислый газ, водород, азот и сероводород, которые сжигаются с использованием тепла отходящих газов для обогрева метантенков. Процесс наиболее полно протекает при 45—50 °С без доступа воздуха. [c.350]


Смотреть страницы где упоминается термин Метан использование: [c.154]    [c.310]    [c.204]    [c.100]    [c.107]    [c.431]    [c.466]    [c.39]    [c.137]    [c.189]    [c.56]    [c.22]   
Основные начала органической химии том 1 (1963) -- [ c.32 , c.170 , c.387 ]




ПОИСК







© 2025 chem21.info Реклама на сайте