Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мочевина структура

    В комплексе находится шесть молекул мочевины в гексагональной ячейке. Изучение чистых кристаллов мочевины показывает, что они принадлежат к тетрагональной системе и имеют плотную упаковку без каких бы то ни было каналов или свободного пространства, в котором могли бы быть заключены другие молекулы. Таким образом, в процессе комплексообразования наблюдается изменение кристаллической структуры с тетрагональной на гексагональную. [c.214]


    Промежуточное положение между процессами хемосорбции и разделением с помощью чисто адсорбционных сил занимают методы, основанные на образовании некоторыми веществами непрочных соединений (комплексов, аддуктов), которые характеризуются строго определенной кристаллической структурой. Наиболее характерный пример таких методов — выделение парафиновых углеводородов нормального строения с числом атомов углерода выше 6—7, а также их некоторых производных путем образования аддуктов с карбамидом (мочевиной) O(NH2)2. [c.314]

    Структура комплексов тиомочевины аналогична структуре комплексов мочевины. Больший размер атома серы обусловливает образование канала с большими поперечными размерами, что позволяет получать комплексы тиомочевины с молекулами, имеющими поперечные размеры, большие, чем у молекул, вступающих в комплексы с мочевиной. [c.203]

    В холодном климате (зимний период, северная или приарктическая полоса) возможна эксплуатация дизельных топлив, имеющих достаточно низкие температуру кристаллизации (застывания) и вязкость. Для получения топлив с удовлетворительными низкотемпературными свойствами из дизельных фракций большинства нефтей приходится удалять алканы нормального строения с высокой температурой застывания. Поэтому нефтяные среднедистиллятные фракции подвергают депарафинизации методом комплексообразования с мочевиной (карбамидом) или адсорбционным методом на молекулярных ситах (цеолитах). Поскольку дизельные топлива занимают в структуре потребления нефтяных продуктов одно из первых мест, отделяемые при их депарафинизации алканы могут служить основным сырьем для получения кислот [c.285]

    Рентгеноструктурными исследованиями установлено, что чис — ый карбамид (мочевина) имеет тетрагональную структуру. В процессе комплексообразования происходит перестройка его крис— [c.270]

    Из этих данных делается вывод, что, например, в мочевине структура [c.223]

    Б тех случаях, когда структура полимера очень сложна и недостаточно выяснена, название полимера слагается из наименований исходных веществ, которые входят в состав данного высокомолекулярного соединения, например феноло-формальдегид-ные, мочевино-формальдегидные, меламино-формальдегидные полимеры. [c.11]

    Структуры некоторых сложных эфиров, образующих комплексы с мочевиной [c.207]

    Кристаллическая структура мочевины в комплексе радикально отличается от структуры чистой мочевины, что видно из данных табл. 5. [c.214]


    Изучалась структура комплексов нормальных алканов с мочевиной [146]. Водородные связи соединяют молекулы мочевины в спирали, образующие стенки гексагональных каналов, в центре которых располагаются молекулы углеводородов. Образование комплекса сопровождается изменением кристаллической струк- [c.73]

    Рентгеноструктурное исследование также указывает, что многие комплексы тиомочевины имеют кристаллическое строение, аналогичное одному из разобранных выше, и полностью аналогичны комплексам мочевины. В отличие от орторомбической структуры кристаллов тиомочевины ячейки комплексов тиомочевины обычно имеют тригональную структуру. Известно несколько случаев, когда ячейка комплекса принадлежит к орторомбической системе. Очевидно, в различных условиях реакции можно осадить различные кристаллические формы комплексов тиомочевины. [c.215]

    Мочевина в соединениях включения образует кристаллическую решетку с симметрией шестиугольной призмы, имеющей пустоты в виде каналов, диаметр которых, измеренный рентгенографически, равен 4,9 А. Эти пустоты могут быть заполнены молекулами парафиновых углеводородов, линейной структуры, состоящ,ими не менее чем из 6—8 атомов углерода диаметр включаемых молекул равен 3,8-4,2 А. [c.77]

    Тиомочевина С5(НН2)г образует аддукты с ббльшим поперечным сечением каналов, чем мочевина. В этих каналах помещаются разветвленные цепи и циклические молекулы алифатических соединений. Нормальные парафины, имеющие не менее 16 атомов углерода, при 0°С также образуют аддукты с тиомочевиной. Но при этом их цепи свертываются в спираль достаточной длины и как раз такого диаметра, как диаметр каналов в тиомочевинном остове аддукта. Различие структуры и условий образования аддуктов мочевины и тиомочевины объясняется тем, что атомы серы, занимающие в структуре последней положение, аналогичное положению атомов кислорода в структуре мочевины, имеют значительно больший размер, чем атомы кислорода. Большинство ад- [c.28]

    Дальнейшая конденсация с выделением молекул спирта приводит к образованию сетчатых молекул. В случае конденсации мочевины и формальдегида с глифталями получаемые продукты очень разнообразны по структуре. Вероятно, первые стадии конденсаций происходят по схеме  [c.501]

    Комплексы мочевины и тиомочевины представляют собой новый тип комплексов. В некоторых случаях агрегаты, образовавшиеся путем окклюзии соединений, как, например, с холеиновой кислотой, а также клатратные соединения обладают структурой, аналогичной структуре рассматриваемых комплексов. Кристаллические структуры чистого реагента и реагента в аг-. регате, образовавшемся путем окклюзии, по существу одинаковы. Вещество 1щедряется в агрегат или комплекс и окружается кристаллической решеткой реагента. В комплексах кристалшческая решетка мочевины (или тиомоче-иины) совершенно отлична от решетки этих же чистых реагентов. [c.203]

    Канальные соединения включения. Молекулярные соединения мочевины и тиомочевины с углеводородами в отличие от клатратов имеют структуру, пронизанную каналами. Такое строение возникает в присутствии цепочечных молекул-гостей подходящего размера, вокруг которых молекулы вещества-хозяина могут располагаться с достаточной плотностью, соединяясь при этом друг с другом водородными связями. [c.27]

    При кристаллизации чистой мочевины СО(ЫН2)2 атом кислорода каждой ее молекулы соединяется водородными связями О...Н— с атомами азота четырех других молекул мочевины, причем последние, в свою очередь, связываются каждый с двумя атомами кислорода. В результате получается сравнительно плотная тетрагональная структура (рис. 4, а). Кристаллизация мочевины в присутствии достаточно длинных молекул нормальных парафинов приводит к совершенно другому результату молекулы парафинов включаются в структуру, раздвигая молекулы мочевины, и образуется менее плотная гексагональная структура, пронизанная [c.27]

    Парафиновые углеводороды нормального строения образуют так называемые клатратные соединения с мочевиной, располагаясь в пустотах ее кристаллической решетки. Эта особенность используется для отделения нормальных углеводородов и их производных от родственных соединении с разветвленной структурой. Нормальные углеводороды кристаллизуются с мочевиной в спиртовых или ацетоновых растиорах. [c.227]

    Комплексы с мочевиной дициклических структур вполне возможны, если молекулярный вес углеводородов достаточно велик и циклы расположены соответствующим образом. Действительно, из фракций твердого парафина, состоящих из высших углеводородов порядка от Сд, до С ц, при помощи мочевины были выделены фракции, способные к комплексообразованию, в которых анализом было показано наличие более одного цикла на одну молекулу. Сомнительно, чтобы эти продукты содержали коиден-сированные системы. По всей вероятиости, предполагаедше дицикличесшхе соединепня, образующие комплексы, обладают следующей структурой  [c.205]

    Тиомочевина. Соотношения между структурами, способность к ком-плоксообразопанию и стабильность комплекса недостаточно хорошо изучены для соединений, образующих комплексы с тиомочевиной, по сравнению с реакционной способностью углеводородов с мочевиной. Стабильность како1 о-нибудь комплекса с тиомочевиной даже при 0° весьма низка и приблизительно соответствует стабильности комплекса мочевины с низшими и-парафинами, например с -октаном. Оценка сравнительной нестабильности, вероятно, в значительной степени связана с некоторыми противоречиями, отмеченными различными авторами, сделавшими противоположный наблюдения. Высокая стабильность комплексов мочевины с высокомолекулярными / -парафинами не наблюдается при образовании комплексов с тиомочевиной. [c.208]


    Ввиду ббльшего разнообразия структур углеводородои, вступающих п комплекс с тиомочевиной, чем с мочевиной, получение уравнения, выражающего зависимость отношения числа молей тиомочевины к числу молей органического вещества, значительно труднее, чем для комплексов мочевины с м-парафи1шмп. Полоса на рис. 3 соответствует данным табл. 4, заимствованным главным образом у Шленка [18]. [c.212]

    Комплексы с мочевиной и тиомочевиной. Возможности недавно разработанных процессов разделения при помощи мочевины и тиомочевины только сейчас начинают выясняться. Эти методы представляют особую ценность в тех случаях, когда структура молекул разделяемых соедивепий обладает специфическими особенностями. [c.502]

    Однако из органических веш еств, рассеянных в горных породах, удалось выделить небольшие количества продуктов гидролиза спиртового характера детальный анализ указал на наличие среди этих продуктов соединений с алифатическими структурами, идентичными наиболее распространенным скелетам алифатических углеводородов и карбоновых кислот нефти [165, 668]. В частности, из сланца Грин Ривер выделен и полностью идентифицирован ряд ациклических насыщ,енных спиртов С з — С20 изопреноидного строения, содержащих ОН-группу только на конце или в положении 2-основной цепи, в том числе, например, соединения (ЬХХ— ЬХХП) [165]. С помощью клатратообразования с мочевиной показано и присутствие в образце спиртов с линейной алкановой цепью. [c.113]

    Депарафинизацию масляных дистиллятов из высоко-парафинистых нефтей с небольшим содержанием серы иногда осуществляют при помощи карбамида (мочевины). Карбамидную депарафинизацию применяют для очистки легких масел, содержащих высокозастывающие нормальные парафины с длинной углеродной цепью. Этот метод, частности, используют для трансформаторных масел. При карбамидной депарафинизации тяжелых масел должного эффекта не достигается, так как содержащиеся в них высокозастывающие углеводороды с разветвленной структурой не взаимодействуют нужным образом с карбамидом. [c.129]

    Туннельные, или канальные полости образуются в комплексах мочевины с н-ажанами и комплексообразующими углеводородами, а также в комплексах тиомочевинн с углеводородами изостроения. Гидраты газов и жидкостей, дифенолы, ангидриды ароматических кислот и другие вещества образуют соединения включения, имеющие пустоты в кристаллической решетке в виде клеток. Слоистые структуры имеются у клатратных соединений, образуемых глиной, гидроокисями двухвалентных металлов, графитом, окислами графита и другими веществами. [c.29]

    В 1940 г. немецкий исследователь Бенген установил, что алифатические соединения с линейной структурой молекул, в частности алканы, содержащие более шести атомов углерода, образуют с мочевиной (карбамидом) кристаллические комплексы. Разветвленные алканы и циклические углеводороды (никлоалканы, арены), как правило, ие способны к комплексоэбразованию с карбамидом. [c.113]

    Пластичные смазки являются распространенным видом смазочных материалов в большинстве случаев они состоят пз трех компонентов — дисперсионной среды (жидкой основы), дисперсной фазы (твердого загустителя) и добавок (модификаторов структуры, присадок и наполнителей). В качестве дисперсионной среды смазок используют нефтяные, синтетические и иногда растительные масла. Загустителями чаще всего являются металлические мыла (соли высокомолекулярных жирных кислот), твердые нефтяные углеводороды (церезины, петролатумы) и некоторые продукты неорганического (бентонит, силикагель) и органического (пигменты, производные мочевины) происхождения. Загустители образуют в дисперсионной среде стабильную структурированную систему, их содержание не превышает 20—22% (обычно 8—12%). Для регулировапия структуры и улучшения функциональных свойств в смазки вводят добавки (поверхностно-активные вещества и твердые порошкообразные продукты). [c.253]

    Сложные эфиры реагируют с водой при умеренных температурах с разложением и образованием кислот, каталитически ускоряющих разложение эфира по экспоненциальному закону. Затормозить процесс роста кислотного числа можно путем ввода в масло стерически затрудненных карбодиимидов, эффективность действия которых основана на двух характеристиках 1) возможности быстро и селективно реагировать с кислыми соединениями, даже столь слабыми, как жирные кислоты последние по реакции переводятся в стабильные и нейтральные производные мочевины 2) новые присадки сами не подвержены гидролизу. Названные свойства основаны на уникальной химической структуре карбодиимидов, механизм действия которых представлен ниже. [c.201]

    Полимеры пространственной структуры с частыми поперечными связями между цепями образуются при поликонденсацип мочевины и формальдегида. Образующиеся промежуточно моно-метилолмочевина и диметилолмочевина реагируют по следующей гхеме  [c.161]

    Ненаправленность ван-дер-ваальсовских связей, действующих между молекулами — структурными единицами в молекулярных кристаллах,— во всех случаях позволяет молекулам располагаться плотнейшим образом. Как заметил А. И. Китайгородский, выступы одной молекулы так точно попадают во впадины соседних молекул, что между ними остаются лишь самые небольшие зазоры (рис. 2). Координационные числа для многих молекулярных кристаллов равны 12, координационное число гексаме-тилентетрамина К4(СН2)б И, координационное число молекулярных кристаллов мочевины 10. Структура молекулярных кристаллов устойчива в тех случаях, когда молекулы не накладываются друг на друга, но имеют максимальное количество точек соприкосновения. [c.22]

    Аддукт мочевины с н-гептаном разлагается при 25° С структуры же, образованные мочевиной с высшими н-парафинами, начиная с н-гексадекана, настолько устрйчивы, что не разрушаются при нагревании до 130° С, т. е. вблизи температуры плавления мочевины (132,7°С). Длина цепей молекул-гостей может быть как угодно велика получено соединение включения мочевины с поли-этиленоксидом, молекулярная масса которого достигает 4-10 . Температура плавления этого аддукта на 10° превышает температуру плавления мочевины. В то же время соединения включения с мочевиной при обычных условиях не образуются, если цепи н-парафинов-гостей короче Се при низкой температуре и высоком давлении минимальная длина цепей Сз. Помимо нормальных углеводородов соединения включения с мочевиной образуют спирты, начиная с гексанола кетоны, начиная с ацетона кислоты — с масляной кислоты амины — с гексаметилендиамина н галогенпроиз-водные — с октилгалогенидами. Интересно, что одна-две боковые метильные группы на 12 —24 атома углерода в цепи молекулы-гостя еще не исключают образования его соединения включения с мочевиной. [c.28]

    В структуре клатратов, остов которых построен при помощи водородных сйязей, молекулы-хозяева и молекулы-гости выполняют одинаково важные, хотя и разные функции. Это видно из того, что если молекулы-гости слишком велики, то клатрат просто не образуется. Функции молекул-гостей в канальных аддуктах мочевины и тиомочевины еще более существенны. Они не только служат, так же как и в клатратах, наполнителем и связующим, стабилизируя структуру аддукта силами межмолекулярного взаимодействия, но и шаблоном, по которому строится структура канального аддукта. Их размеры и конфигурация предопределяют конфигурацию и параметры, так же как диаметр стержня, вставленного в отверстие ирисовой диафрагмы, задает диаметр этого отверстия. Дело в том, что молекулы-хозяева соединяются водородными связями в упругие спирали, охватывающие своими кольцами цепи включаемых молекул. Понятно, что диаметр спирали может в точности подгоняться по размеру включаемых цепей и нечастые выступы — отдельные боковые функциональные группы углеводородной цепи — не мешают спирали охватывать эту цепь, так же как неровности ствола, сучки и ветки не мешают змее охватывать ствол дерева. Естественно, подобные молекулярные спирали не могут оставаться пустыми. Поэтому, обнаружив в структуре какого-нибудь вещества спиральную конфигурацию цепей, можно не сомневаться, что внутри их имеются либо молекулы-гости — и тогда мы встречаемся с канальным аддуктом, либо собственные молекулы данного вещества со структурами последнего вида мы познакомимся ниже, когда речь пойдет о биополимерах. [c.29]

    В целях улучшения структуры покрытий и повышения выхода по току рекомендуется введение в электролит добавок тио-мочевины, нафталина, ос- и р-нафтола, антрацена, салициловой кислоты, фурфурола, парафина, иодида тетраэтиламмония и др. Для приготовления электролита могут быть использованы смеси ароматических углеводородов этилбензол с ксилолом или толуолом с основным компонентом А1Вгз (50 %-й раствор). [c.111]

    При взаимодействии мочевины с формальдегидом образуются ее моно- или диметилолпроизводные, которые при последующей поликонденсации с мочевиной в кислой среде образуют полиметиленмочевины — полимеры линейной структуры. Рассмотрите схемы реакций получения монометилолмочевины, диметилолмо-чевины и полиметиленмочевины. [c.102]

    Наличие в растворе посторонних веществ может вызвать изменение внешней формы растущего кристалла. Так, хлорид натрия в водном растворе кристаллизуется в виде простых кубов (рис. 5.8, а), если же раствор содержит немного мочевины 0(NH2)2. то кристаллы приобретают форму кубов со срезанными вершинами. При еще большем содержании мочевины в растворе размер граней, срезающих вершины куба, увеличивается (рис. 5.8, б, а), а при достаточно высокой концентрации моче-ьины именно эти грани формируют кристалл и вместо куба получается октаэдр (рис. 5.8, г). По составу и структуре октаэдрические кристаллы хлорида натрия ничем не отличаются от кубических и практически не содержат мочевины. Это явление. можно объяснить по-разному молекулы мочевины адсорбируются или на гранях куба, способствуя их быстрому росту, или же, что более вероятно, — на гранях октаэдра, замедляя их рост (скорость самопроизвольно растущих граней кристалла в условиях, близких к равновесным, должна быть минимальной), В данном случае проявляется каталитическое влияние постороннего вещества (мочевины) на скорость роста отдельных граней кристалла (хлорида натрия). [c.249]

    Пенопласты. Своеобразную группу пластмасс составляют пенопласты и поропласты — так называют пластмассы, обладающие ячеистой, сотовой или пористой структурой. Пенопласты могут быть изготовлены на основе различных полимеров (полистирола, поливинилхлорида, полиуретанов, фенолформальдегидных или мочевино-формальдегидных полимеров и др.). Их получают обычно с помощью того или другого процесса, сопровождающегося выделением газа. Этот процесс проводят в массе полимера, находящегося в пластическом состоянии. В определенных условиях образующиеся газы остаются в полимере в виде мельчайших пузырьков, при этом, в частном случае, обр .чуется структура высокодисперсиой пены. [c.228]


Смотреть страницы где упоминается термин Мочевина структура: [c.43]    [c.43]    [c.133]    [c.240]    [c.46]    [c.204]    [c.207]    [c.223]    [c.78]    [c.65]    [c.212]    [c.74]    [c.156]    [c.500]    [c.431]   
Нестехиометрические соединения (1971) -- [ c.459 ]




ПОИСК







© 2024 chem21.info Реклама на сайте