Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зародышей образование скорость роста

    Размер получаемых кристаллов зависит от соотношения между скоростью образования зародышей и скоростью роста кристаллов. Если скорость образования зародышей относительно велика, появляется множество мелких кристаллов. При малой ее скорости снятие пересыщения идет в основном за счет роста сравнительно небольшого числа образовавшихся вначале зародышей, которые превращаются в крупные кристаллы. [c.247]


    Известно, что кристаллизация из растворов включает в себя две основные стадии образование кристаллических зародышей и их дальнейший рост, взаимодействие между собой и с маточным раство-,ром. Соответственно, кинетика кристаллизации характеризуется двумя величинами скоростью образования зародышей и скоростью роста кристаллов. В зависимости от свойств веществ, условий проведения процесса и требований к конечному продукту обе или одна из этих стадий могут оказаться лимитирующими. [c.145]

    Если процесс роста является безактивационным и лимитируется стадией образования критических зародышей, то скорость роста (массовая или линейная) будет пропорциональна 0 , т. е. [c.25]

    Таким образом, кинетику процесса кристаллизации можно охарактеризовать двумя величинами скоростью образования зародышей и скоростью роста кристаллов. Для более ясного представления механизма процесса следует отдельно рассмотреть каждую из этих стадий, а также влияние различных факторов на скорость протекания этих процессов. [c.54]

    Преобладание процесса возникновения новых зародышей над скоростью роста уже имеющихся кристаллов особенно характерно для комплексных электролитов, а также для растворов простых солей, содержащих ПАВ. В последнем случае из-за адсорбции чужеродных частиц на растущих гранях линейная скорость роста кристаллов уменьшается и осадки получаются высокодисперсными. Весьма часто при этом они не имеют даже четко выраженной кристаллической структуры. При обратном соотношении скоростей, когда линейная скорость роста кристаллов начинает преобладать, осадок имеет грубую кристаллическую структуру. В общем случае образованию мелкокристаллических осадков способствует повышение плотности тока на катоде, понижение температуры электролита, добавки нейтральных солей (снижающих концентрацию ионов осаждаемого металла у катода), разбавление раствора, введение в электролит ПАВ, комплексообразование. [c.389]

    Интенсивное перемешивание в условиях псевдоожижения увеличивает скорость подачи материала путем диффузии его к граням растущих кристаллов, что ускоряет их рост. При этом быстро уменьшается степень пересыщения раствора. При больших скоростях раствора, как известно, увеличивается скорость образования зародышей это может привести к снижению размеров кристаллов. При одинаковых температурах и гидродинамических условиях с уменьшением степени пересыщения скорость роста кристаллов возрастает в большей степени, чем скорость образования зародышей. Обычно таким способом осуществляют кристаллизацию относительно слабо пересыщенных растворов вблизи нижней границы метастабильной области, регулируя степень пересыщения, температуру. [c.642]


    Эти параметры зависят от температуры, кривые скорости образования зародышей и скорости роста кристаллов характеризуется наличием максимумов, так как высокая вязкость при пониженных температурах препятствует перераспределению атомов и замедляет процессы диффузии, определяющие образование зародышей и рост кристаллов. [c.141]

    После формирования центров кристаллизации происходит их дальнейший рост — вторая стадия образования новой фазы, которая протекает практически при любых степенях пересыщения. Рост твердых частиц нельзя рассматривать как простое присоединение молекул к поверхности зародыша, так как вероятность такого присоединения очень мала из-за низкой энергии взаимодействия. Стадия роста зародышей, как и первая стадия, включает процесс возникновения двумерных центров конденсации на поверхности зародыша и доставку вещества к этим центрам, которые вследствие разрастания создают новые слои вещества на зародыше. Отсюда следует, что вывод уравнения для скорости роста зародышей такой же, как и для первой стадии процесса — образования зародышей. Уравнение скорости роста зародышей имеет вид  [c.125]

    Размер получаемых кристаллов зависит Ют соотношения между скоростью образования зародышей и скоростью роста кристаллов. Если скорость образования зародышей относительно велика, образуется множество мелких кристаллов. При малой ее скорости снятие пересыщения идет в основном за счет роста небольшого количества образовавшихся вначале зародышей, которые превращаются в крупные кристаллы.В заводских условиях стадии образования зародышей -и роста кристаллов протекают не последовательно, а совмещаются, осо-40 [c.40]

    Для расчета процесса кристаллизации и предварительного выбора аппаратуры необходимо знание кинетических параметров скорости образования зародышей и скорости роста кристаллов и связанного с ними среднего размера кристаллов, а также величины допустимого максимального переохлаждения (пересыщения) раствора. [c.273]

    Процесс кристаллизации состоит из периодов образования зародышей и роста кристаллов протекает он значительно медленнее, чем процесс растворения кристаллов. В случае, когда скорость образования зародышей выше скорости роста их, получается большое количество мелких кристаллов. Если же скорость роста кристаллов больше скорости образования зародышей, то получаются крупные кристаллы. [c.190]

    Теоретические выражения для скорости образования зародышей и скорости роста кристалла аналогичны по структуре. Однако из сравнения этих выражений видно, что действие переохлаждения [c.66]

    Образованию тонкодисперсных осадков благоприятствует повышение концентрации исходных реагирующих веществ, соответственно пересыщение, поскольку скорость образования зародышей нарастает с увеличением пересыщения быстрее, чем скорость роста частиц. [c.10]

    При получении коллоидной системы скорость образования зародышей 1 должна быть велика, а скорость роста кристаллика ы мала, так как лишь в этом случае образуется множество кристалликов, каждый из которых соответствует коллоидным размерам. Наоборот, если скорость U мала, а скорость ыз велика, то все выделившееся вещество отложится на небольшом числе зародышей и в результате образуется сравнительно небольшое количество крупных кристаллов. [c.227]

    Нарушения на гладких гранях обусловливают рост кристалла без затраты энергии на образование двумерных зародышей следовательно, скорость роста является линейной [c.259]

    При электролитическом осаждении металлов скорость реакции определяется вероятностью возникновения центров кристаллизации, которая тем больше, чем больше величина перенапряжения. Прямолинейный характер зависимости 1п I от 1/г] доказывает, что затруднения всего процесса обусловлены замедленностью стадии образования трехмерных зародышей. Такая зависимость была получена при выделении некоторых металлов на монокристаллах. После возникновения трехмерных зародышей рост металлической фазы происходит в условиях повторяющегося шага прикреплением новых структурных элементов в местах, энергетически наиболее выгодных, а скорость роста определяется энергией, необходимой для образования двумерного зародыша. Для этого случая характерна прямолинейность зависимости 1п I от 1/т]. [c.137]

    Разложение Са(0Н)2 происходит по другому механизму. Здесь скорость образования зародышей больше скорости роста новой фазы. В электронографе удается четко разделить две фазы исчезновение линий Са(0Н)г, очевидно, за счет дегидратации, и после дополнительного нагревания — рост кристалликов СаО. При этом образуется более равновесная структура поверхности, чем в случае MgO. [c.87]


    Фильтруемость осадка зависит от размеров его частиц, которые в свою очередь определяются соотношением двух факторов скорости образования зародышей кристаллов и скорости роста кристаллов. [c.197]

    При описании хода термической диссоциации скорость реакции чаще всего ставится в зависимость от состава твердой фазы, выраженного степенью превращения (распада) а твердого исходного вещества. Па рис. УП1-12 представлены наиболее характерные зависимости а от времени реакции. Различную форму приведенных на рис. УП1-12 кривых можно объяснить качественно, учитывая разницу скоростей образования и роста зародышей. Кривая 1 соответствует случаю, когда в первые моменты прохождения [c.259]

    В период ускорения реакции степень распада исходного вещества во многих случаях зависит от скоростей образования зародышей и их роста. Обычно можно допустить, что скорость роста зародышей постоянна. Тогда вид уравнения степени распада обусловливается в основном тем, в какой форме будет выражена скорость зародышеобразования. Из предположения, что одна полностью прореагировавшая молекула твердого исходного вещества [c.259]

    Образование зародышей может происходить путем самопроизвольной кристаллизации. При этом оба процесса (образование зародышей и рост кристаллов) протекают одновременно. Если скорость образования зародышей больше скорости их поста, получается большое количество мелких кристаллов. Если же скорость роста больше скорости образования зародышей, получается меньшее количество крупных кристаллов. Изменяя факторы, влияющие на скорость образования зародышей и скорость их роста, можно регулировать размеры кристаллов. Быстрое охлаждение, перемешивание раствора, высокая температура и низкий молекулярный вес кристаллов способствуют образованию зародышей и получению мелких кристаллов. Наоборот, медленное охлаждение, неподвижность раствора, низкая температура и высокий молекулярный вес способствуют процессу роста и получению крупных кристаллов. [c.513]

    Из изложенного можно сделать вывод, что структура электролитических осадков определяется соотношением скоростей образования кристаллических зародышей и их роста, в котором основную роль играют диффузионные и пассивационные явления. Чем выше относительная скорость образования зародышей, т. е. чем больше образуется новых кристаллов в единицу времени, тем более мелкозернистыми должны быть осадки, и наоборот. Так как для образования кристаллических зародышей требуется более [c.337]

    При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибких кристаллов. Процесс кристаллизации складывается из двух стадий стадия образования центров кристаллизации (или зародышей) и стадия роста этих центров. Вторая стадия кристаллизации — многоступенчатый процесс, который по различным причинам (например, вследствие возникновения механических напряжений) может останавливаться на любой промежуточной стадии. Монокристаллы образуются только в особых условиях. Обе стадии кристаллизации сильно зависят от температуры. Понижение температуры благоприятствует образованию зародышей кристаллизации, но в то же время уменьшает молекулярную подвижность, а вместе с ней и скорость роста кристаллов. Поэтому температурная зависимость скорости кристаллизации проходит через максимум. Большинство алканов имеет несколько аллотропических модификаций, кристаллизуясь в гексагональной, триклинной, моноклинной и орторомбической формах. Некоторые [c.190]

    Температура кристаллизации в общем оказывает положительное влияние на скорость роста кристаллов. При более высокой температуре сни-жаетсй вязкость раствора и, следовательно, облегчается диффузия. Однако в большей степени влияние температуры отражается на увеличении числа зародышей, что, как известно, приводит к образованию более мелких кристаллов. При положительной растворимости с повышением температуры кристаллизации уменьшается степень пересыщения раствора, что, в свою очередь, вызывает снижение движущей силы процесса. [c.636]

    Уравнения для определения интенсивности образования зародышей /, линейной скорости роста кристаллов л (О, численной плотности их распределения /(/ ), содержания кристаллической фазы в суспензии фд, среднего размера и Б , опре-деляюшие связь между и фд, представляют математическую модель процесса массовой непрерывной кристаллизации в рассматриваемом аппарате  [c.85]

    Образование осадка начинается с формирования зародышей или центров кристаллизации — мельчайших образований по размерам, сравнимых с размерами молекул или несколько большими. Рост этих образований в растворе приводит к появлению более крупных частиц, которые и выпадают в осадок. Таким образом, на размер кристаллов оказывают влияние относительные скорости двух основных процессов скорость образования центров кристаллизации и скорость роста кристаллов. При небольшой скорости образования центров кристаллизации по сравнению со скоростью роста кристаллов в растворе будет происходить образование небольшого числа крупных кристаллов. Если же скорость образования центров кристаллизации будет превышать скорость роста кристаллов, в растворе образуется большое число мелких кристаллов. [c.146]

    Сдвиг потенциала электрода в сторону более отрицательных значений, чем равновесный, вызывает восстановление катионов металла, что и приводит к образованию новой кристаллической фазы. Ее возникновение связано с известными особенностями, знание которых должно помочь подбору таких условий восстановления, которые обеспечили бы получение осадка требуемого качества. Строение кристаллического тела — величина отдельных кристаллов — зависит от соотношения между скоростью (частотой) зарождения новых центров кристаллизации (зародышей) и скоростью роста уже зародившихся кристаллов. Форма кристаллов зависит от соотношения скоростей роста их граней. Если скорость образования зародышей велика, по сравнению со скоростью роста кристалла, то получается мелкокри- [c.492]

    В сравнительно немногочисленных экспериментальных рабо тах, посвященных влиянию затравки на процесс кристаллизации изучались такие вопросы, как соотношение между увеличе нием массы и поверхности затравочных кристаллов в ходе про-цесеа кристаллизации [18] изменение дисперсного состава кристаллических осадков в зависимости от размера затравочных кристаллов [71] или от их количества [72] условия образования новых зародышей [73] скорость роста затравочных кристаллов в зависимости от их размера [8] кинетика кристаллизации в присутствии затравки [74, 75] рост затравочных кристаллов, вводимых в пересыщенные растворы [76, 77]. [c.122]

    Факторы, определяющие природу и состав осадка, а также его пригодность или непригодность для аналитических целей, весьма многочисленны и с количественной точки зрения оценены недостаточно. Их характер можно представить себе, рассматривая процесс осаждения во времени. Сначала раствор становится пересыщенным, и рано или поздно в нем появляется несколько зародышей, пригодных для первоначального образования кристаллов. В зависимости от скорости образования зародышей и скорости роста кристаллов характер получающегося осадка может меняться от микрокристаллического до крупного и гранулированного. При стоянии размер кристаллов будет медленно возрастать, поскольку мелкие кристаллы более растворимы, чем крупные, поэтому последние растут за счет первых. Полная картина процесса, вообще говоря, сложнее. Могут наблюдаться адсорбция и соосаждение, и осадок может выделиться в аморфном состоянии. Кроме того, он может выделиться сначала в коллоидной форме, что потребует для ускорения коагуляции добавления поверхностноактивных веществ. Часто для понижения содержания нежелательных примесей может потребоваться перекристаллизация осадка. Очевидно, что все эти факторы также зависят от многих физических параметров, например температурных условий, pH, концентрации, скорости добавления реагентов и интенсивности перемешивания. Осаждение из гомогенных растворов уменьшает число этих трудностей, но такие процессы в значительной степени еще остаются эмпирическими. И опять-таки чувствительность капельных проб, основанных на осаждении, можно иногда значительно повысить, если на бесцветном или слабо окрашенном осадке адсорбировать окрашенное вещество. Это позволяет облегчить визуальное определение осадка. (В качестве примера можно привести адсорбцию п-нитробензолазо-а-нафтола на белом осадке Мд(0Н)2.) [c.228]

    Образование геля двуокиси титана нри гидролизе сульфатов, по-ви-димому, подчиняется общим закономерностям кристаллизации твердой фазы из растворов. Согласно теорнп, при образовании кристаллов из раствора характер протекания процесса определяется скоростью образования зародышей и скоростью роста кристаллов. Если в растворе имеются благоприятные условия для образования зародышей, по.иучается большое число мелких кристаллов. При отсутствии условий для об- [c.126]

    Известно, что размер кристаллов определяется соотношением между скоростью образования зародышей и скоростью роста кристаллов (см., например, [54]). Если первая значительно больше второй, то кристаллы получаются мелкими и в большом количестве. Температура, вязкость, поверхностно активные вещества, влияя на скорость роста кристаллов, смещают это соотношение. Увеличение вязкости масла резко снижает скорость кристаллизации вследствие замедления поступления кристаллизующегося вещества к зародышу (у стекол это наблюдалось М. П. Воларовичем и [c.264]

    Далее могут возникать поверхностные моноатомные образования с уступами, на которых присоединение следующего атома будет облегчаться благодаря взаимоде йствию уже с тремя соседними элементами (положение ///) энергия взанмодействня составит здесь величину За. После созда1П1я такого поверхностного образования присоединение каждого следующего атома к нему сопровождается выигрышем энергии За и лишь в начале развития каждого нового ряда атомов — 2а, чем обеспечивается так называемый повторяющийся шаг и наибольшая скорость распространения монослоя атомов на поверхности, т. е. наиболее быстрый рост грани. Когда монослой атомов покроет всю поверхность грани, дальнейший ее рост будет вновь проходить те же стадии до тех пор, пока не образуется двухмерный островок, обеспечивающий повторяющийся шаг. Очевидно, что при образовании такого островка — двухмерного зародыша — затруднения роста грани становятся наименьшими. Скорость роста грани, т. е. скорость формирования кристаллической фазы, должна быть поэтому функцией энергии, пеоб- [c.336]

    Рассмотрим модель кристаллизатора [27]. Изучается процесс кристаллизации в периодическом кристаллизаторе идеального смешения. Полагается, что выделение теплоты кристаллизации не изменяет температуры раствора и пересыщение раствора пропорцио-нально его концентрации Ас с— , t). Скорость роста т] считается зависящей от пересыщения раствора и размера кристалла, а скорость образования зародышей / — от пересыщения. Рост линейного размера кристаллической затравки при изменяющемся пересыщении описывается следующим образом  [c.173]

    Скорость роста кристаллов. Величина и структура частиц осадка зависят не только от скорости их образования, но также от скорости роста кристаллов. Каждый зародыш окружен адгезионным слоем насыщенного раствора. В момент образования первого зародыша раствор пересыщен. Скорость роста зародыша пропорциональна скорости переноса из пересыщенного раствора в насыщенный адгезионный слой. Изменения концентраций пересыщенного раствора в единицу времени dUjdt определяют из уравнения Нойеса — Нернста  [c.201]

    При низких температурах ( 250 °С) скорость окисления железа зависит от индекса кристаллической грани и снижается в ряду (100) > (1 И) >-(110) [50]. Зародыши оксида состоят преимущественно из FegOi, они растут, образуя однородную пленку. Вслед за тем происходит образование и рост зародышей а-Ре Оз поверх слоя Рбд04 [51—53]. v [c.204]

    Возможность изменять скорость образования зародышей и их рост позволяет управлять степенью днсиерсности в системе. При малой скорости образования зародышей и большой скорости их роста, что наблюдается при небольших пересыщениях или иереох даждеииях, возникает небольшое число крупных частиц. При большой скорости образования зародышей и малой скорости их роста, что происходит при больших пересыщениях, получается большое число мелких частиц. [c.106]

    Из этого уравнения следует, что затрата работы тем меньше, чем меньше поверхностное натяжение и размеры зародыила. Окончательные размеры частиц дисперсиой фазы зависят от соотношения между скоростью образования зародышей и скоростью их роста, который самопроизвольно происходит в пересыщенных системах. [c.159]

    Для получения высокодисперсной промывочной жидкости таким способом необходимо, чтобы раствор был пересыщенным по выделяемой фазе, и в нем надо создать условия, обеспечивающие одновременное возникновение огромного числа зародышей дисперсной фазы. При этом скорость образования зародышей должна быть намного больше скорости роста кристаллов. Практически это достигается путем введения химических реагентов (КМЦ, крахмала, КССБ и др.) при сильном перемешивании. Происходит не только достижение требуемой дисперсности, но и закрепление этого состояния, стабилизация системы. [c.41]

    Действие веществ, препятствующих возникновению зародышей, вероятно, объясняется чисто хи1 1ическими явлениями, происходящими в растворе. Действие веществ, задерживающих рост зародышей, вызвано адсорбцией их на зародышевых кристалликах и образованием на поверхности кристалликов тончайшего чужеродного слоя, препятствующего дальнейшей достройке кристаллика. Это объяснение подтверждается тем, что зависимость скорости роста кристалликов от равновесной концентрации вещества, препятствующего росту, может быть выражена уравнением, по виду сходным с известным адсорбционным уравнением Фрейндлиха. [c.228]

    Рассмотрим процесс кристаллизации расплава индивидуального вещества, пренебрегая содержащимися в нем примесями. При охлаждении расплава до температуры плавления соответствующего ему твердого вещества в нем возникают флуктуации плотности, которые представляют собой относительно большие скопления частиц (молекул, атомои или ионов) вещества с ориентированным расположением, приближенно подобно тому, как это имеет место в кристаллической решетке. Такие скопления можно рассматривать как некие комплексы, агрегаты или ассоциаты их иногда называют дозародышевыми образованиями. Но они еще не являются стабильными образованиями число частиц в них вследствие теплового движения в расплаве различно и не постоянно. Сталкиваясь друг с другом, такие конфигурации групп частиц могут укрупняться или распадаться в зависимости от соотношения действующих в них межмолекуляр-ных сил и воздействия на эти частицы молекул расплава. При дальнейшем понижении температуры расплава, т. е. при его переохлаждении, преобладающее влияние будет проявлять первый из указанных эффектов. Размеры образований при этом в целом будут увеличиваться до некоторой критической величины. В результате в расплаве начинается образование зародышей кристаллов ( критических кластеров ), которые и становятся центрами кристаллизации. Скорость их образования определяется заданным переохлаждением расплава. По достижении определенного переохлаждения расплава после образования в нем зародышей кристаллов на последних начинается выделение твердой фазы, характеризующееся той или иной скоростью роста образующихся кристаллов. Одновременно может [c.106]


Смотреть страницы где упоминается термин Зародышей образование скорость роста: [c.133]    [c.591]    [c.912]    [c.588]    [c.156]    [c.351]    [c.282]    [c.136]    [c.104]   
Руководство по аналитической химии (1975) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Зародыш

Образование зародышей

Скорость образования

Скорость образования зародышей



© 2024 chem21.info Реклама на сайте