Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генри в газовой фазе

    Коэффициент Генри представляет собой константу вещества, которая при заданной паре веществ теоретически зависит только от температуры и не зависит от давления и присутствия других компонентов в газовой фазе. [c.178]

    Величины t f хотя и пропорциональны константе Генри, но не являются физико-химическими константами, зависящими при данной температуре колонки только от природы системы данный компонент газовой фазы—неподвижная фаза. Это видно из того, что входящее в уравнение (16) время удерживания газа-носителя tQ зависит от объемной скорости газа w. Действительно, вводя выражение (14) в уравнение (16), получаем  [c.559]


    Если сопротивление со стороны газовой фазы существенно и система не подчиняется закону Генри, то можно определить значения А для ряда точек колонны, воспользовавшись известным графическим методом. Затем эти значения можно подставить в уравнение (УП1,3) и проинтегрировать последнее численно для получения искомой высоты насадки. [c.185]

    При соблюдении закона Генри и одновременно при условии, что содержание растворяемого компонента в газовой фазе невелико и, следовательно, его мольная доля может считаться пропорциональной парциальному давлению, приходим к хорошо известному выражению для высоты колонны [c.185]

    Если коэффициент /С является функцией только темпера туры, то соотношение (2.30) представляет собой закон Генри применимость которого ограничена областью малых концентра ций адсорбируемого вещества в объемной газовой фазе Yi = l р1- 0. В более широкой области изменения концентрации необходимо использовать уравнение Лэнгмюра [c.49]

    Исследуем влияние энергии активации проницания на температурную зависимость Л, при этом примем, что стандартное давление Рст достаточно мало, следовательно, растворимость определяется законом Генри (3.11), а газовая фаза представляет собой идеальную смесь. [c.86]

    Расчет равновесия в газожидкостной системе (олефин и альдегид — жидкие, СО и Нг —газообразные) можно выполнить методами, описанными в гл. II. В каждом конкретном случае необходим специальный расчет, для которого требуется информация о растворимости газов в жидкости, летучестях компонентов и т.д. Поэтому ниже ограничимся рассмотрением случая, когда раствор можно считать идеальным, давление пара жидкого компонента над раствором подчиняется закону Рауля, а растворимость газа — закону Генри. Даже в этом случае расчет равновесия газожидкостной реакции по равновесию реакции в газовой фазе (см. гл. II) затруднен отсутствием или ненадежностью данных о растворимости Нг и СО в жидкой фазе, содержащей олефин, альдегид и катализатор. Нетрудно, однако, получить соотношение, указывающее на характер изменения состава газожидкостной реакции (Л , — мольная доля 1 в жидкости) по сравнению с составом газофазной реакции N1 — мольная доля I в равновесной газовой фазе). Величины [c.330]

    Закон распределения растворенного вещества в двух жидких фазах можно вывести из закона Генри, определяющего зависимость растворимости газа от парциального давления [10]. Примем, что оба раствора граничат с газовой фазой. Для идеальных и сильно разбавленных растворов концентрация вещества В, растворенного в жидкостях А (фаза рафината ) и С (фаза экстракта Е), пропорциональна парциальному давлению его пара над раствором. [c.19]


    Согласно (1.5) коэффициент а равен концентрации в объеме, соответствующей половинному заполнению поверхности. Уравнение (1.5) описывает изотермическую адсорбцию на активной поверхности и называется изотермой Лангмюра (рис. 1.3). При малых концентрациях адсорбата в газовой фазе, пока ЬС I, оно дает 0 = ЬС, т. е. при малых степенях заполнения поверхности адсорбция протекает по закону Генри (участок О А на рис. 1.3). При больших концентрациях, когда йС 1, 0 = 1, что соответствует насыщению поверхности адсорбента (участок ВТ) на рис. 1.3). Чем больше Ь, тем при меньших объемных концентрациях наступает насыщение поверхности. [c.16]

    Зависимость растворимости газов в жидкостях от давления. Если газ химически не взаимодействует с растворителем, то зависимость растворимости газа в жидкости от давления выражается законом Генри. Для идеальных растворов закон Генри может быть выражен уравнением (128.7). Закон Генри справедлив только тогда, когда растворение газа в жидкости не связано с процессами диссоциации или ассоциации молекул растворяемого газа. Расчет растворимостей газов по уравнению (128.7) при высоких давлениях приводит к ошибкам, если не учитывать зависимость коэффициента Генри от давления. Характер изменения растворимости некоторых газов от давления в воде при 298 К показан на рис. 126. С изменением давления газа растворимость различных газов меняется неодинаково и подчинение закону Генри (128.7) наблюдается лишь в области невысоких давлений. Различие в растворимости газовых смесей и чистых газов в жидкости определяется взаимным влиянием отдельных газов друг на друга в газовой фазе и взаимным влиянием растворенных газов в жидкой фазе. При низких давлениях, когда взаимное влияние отдельных газов невелико, закон Генри справедлив для каждого газа, входящего в газовую смесь, в отдельности. [c.383]

    Здесь X—мольная доля поглощаемого компонента в жидкости р — парциальное давление того же компонента в газовой фазе над жидкостью в условиях равновесия ф — коэффициент Генри, изменяющийся с температурой и зависящий от природы газа и растворителя размерность ф должна быть такой же, как и размерность давления. [c.664]

    Концентрации компонентов в газовой фазе j связаны с их растворимостями в жидком аммиаке правилом Генри  [c.76]

    Для примера рассмотрим систему двуокись серы — вода (рис. 13). Двуокись серы из газовой фазы адсорбируется поверхностью воды. Адсорбция здесь определяется уравнением адсорбции Генри. Адсорбируясь, двуокись серы реагирует с водой. [c.40]

    Из уравнения (38) следует, что заполнение поверхности в области Генри , т. е. в области малых давлений газа, пропорционально давлению в газовой фазе. [c.98]

    Следовательно, заполнение поверхности адсорбента в области Генри пропорционально давлению адсорбата в газовой фазе. Число мест на поверхности адсорбента ограничено, и величина Са в мономолекулярном слое может возрастать до определенного предельного значения Саш, нри котором все места на поверхности адсорбента заняты. Если, попадая на поверхность, молекула адсорбата теряет способность свободно по ней перемещаться, то адсорбция считается локализованной. Очевидно, хемосорбция локализована, физическая адсорбция, как правило, локализована при низких температурах. Для вывода изотермы локализованной адсорбции рассмотрим равновесие [c.334]

    Наиболее часто при этом находят уравнение изотермы адсорбции. Форма изотермы адсорбции на твердых телах зависит от многих параметров свойств адсорбента и адсорбата, взаимодействия адсорбент — адсорбат, взаимодействия молекул адсорбата между собой в газовой фазе и в адсорбированном состоянии. В области малых давлений (концентраций) и соответствующих им малых заполнений поверхности взаимодействие между молекулами адсорбата незначительно, и зависимость а = = / (р) сводится к простейшей форме, называемой законом Генри  [c.215]

    Если в (Vni,50) рассматривать /2 как фугитивность растворенного вещества в газовой фазе, сосуществующей с жидкой (твердой), то оно является точной термодинамической формой закона Генри. Его обычная формулировка — растворимость газа [c.249]

    На рис. 8.8 белыми точками представлена изотерма адсорбции пара -гексана на ГТС при комнатной температуре, полученная обычным вакуумным статическим методом. В области малых концентраций (давлений) гексана в газовой фазе эта изотерма круто поднимается, причем первые более или менее надежно измеренные точки дают величины Г не менее 0,2 мкмоль/м , что соответствует заполнению гексаном уже более 5—7% поверхности. Определить отсюда ход изотермы адсорбции в области более низких заполнений и константу Генри невозможно из-за ненадежности экстраполяции. Черными точками представлена та же изотерма адсорбции в области низких и средних заполнений поверхности ГТС, полученная описанным методом достижения адсорбционного равновесия с использованием насыщения газа-носителя паром гексана в криостате (для создания малых его концентраций) и тепловой десорбции для определения малых значений адсорбции. Из рисунка видно, что при этом можно исследовать изотерму адсорб- [c.157]


    Выражения Ы—Л )/Л = Г и М 1У=с представляют соответственно адсорбцию по Гиббсу и концентрацию адсорбата в газовой фазе [см. выражение (7.2)]. Чтобы получить молекулярно-статистическое выражение для константы Генри, обратим внимание на то, что в этом случае адсорбция Г->-0 и концентрация адсорбата в равновесной газовой фазе i>- -0, т. е. можно пренебречь взаимодействием молекул адсорбата друг с другом как в газовой фазе, так и в адсорбированном состоянии. Таким образом в этом простом случае, который, как и раньше, отметим индексом 1, [c.161]

    Отсюда видно, что с ростом Kas давление адсорбата в газовой фазе р, при котором достигается данное значение 0, сильно уменьшается, т. е. ассоциация способствует росту адсорбции. При 0- 0 получаем уравнение Генри p = Q K. При 7< as = 0 уравнение (13.42) переходит в уравнение (12.23) для модели ДВГ. [c.241]

    Решение. Отношение давления к растворимости соответствует концентрации раствора, находящегося в равновесии с газовой фазой. Это отношение есть коэффициент Генри, не зависящей от давления  [c.158]

    Так как давление газа пропорционально его концентрации в газовой фазе, то закон Генри можно выразить другими соотношениями  [c.194]

    К — коэффициент Генри К = Са С, С — концентрация компонента в с.юе адсорбента нли неподвижной жидкой фазе, С — концентрация компоиеита в газовой фазе). [c.280]

    Сущность разделения газовой смеси с помощью метода газо-жидкостной хроматографии заключается в том, что анализируемая проба перемещается потоком газа-носителя по колонке, заполненной неподвижным слоем сорбента. Концентрация вещества в газовой фазе определяется его распределением в системе сорбент — газ-носитель и зависит от коэффициента Генри. [c.66]

    Закон Генри формулируется так отношение концентрации газа в газовой фазе (Сг) к концентрации его в жидкости ( jk) при постоянной температуре есть величина постоянная [c.251]

    При неидеальном поведении компонента как в газовой фазе, так и в растворе закон Генри может быть записан в виде [61 [c.33]

    Отметим, что для жидкостей коэффициенты абсорбции и коэффициенты Генри сопоставимы с соответствующими коэффициентами для газов только при давлениях, не превышающих давления их паров. При более высоких давлениях пары конденсируются, газовая фаза исчезает, дальнейшее повышение давления до атмосферного практически не приводит к повышению летучести растворяемого компонента и, следовательно, к повышению его растворимости. Высказанное утверждение по существу справедливо и для сжижающихся газов, давление пара которых превышает атмосферное давление. При давлениях выше давления паров таких компонентов увеличение растворимости с давлением сильно замедляется. [c.24]

    Таким образом, при малых давлениях газа величина адсорбции а (на I г адсорбента) или а (на единицу его поверхности) пропорциональна концентрации или давлению адсорбата в газовой фазе. Это соотношение для адсорбции аналогично уравнению Генр для растворимости газа. Уравнение (XVI, 1в), как и каждое из уравнений (XVI, 1г), (XVI, 2а), (XVI, 26) или (XVI, За), является простейшим уравнением изотермы адсорбции. Оно называется уравнением Генри для изотермы адсорбции, а его кор -станта—константой Генри. [c.441]

    Т. е. заполнение поверхности в области Генри иропорцнонально давлению адсорбата в газовой фазе. [c.442]

    Таким образом, скорость перемещения дайной концентрации компонента в газе вдоль колонки зависит от константы изотермы распределения Генри. При постоянной объемной скорости газа (осуществляется при достаточно малом перепаде давления газа в колонке) скорость постоянна. Эта скорость тем больше, чем меньше константа Генри К, т. е. чем хуже адсорбируется (или растворяется) данный компонент, и тем меньше, чем он лучше адсорбируется (или растворяется). Поэтому хроматографические полосы разных компонентов перемещаются вдоль колонки с постоянными, но разными скоростями, что и обеспечивает разделение. Поскольку каждая концентрация с в газовой фазе передвн- [c.555]

    Если форма изотермы распределения (адсорбци или растворения) отклоняется от закона Генри, то в уравн(ини (8) производная d jd не постоянна, величина ее изменяется с изменением концентрации с. Поэтому скорость и перемещения данной концентрации в газовой фазе вдоль колонки также не постоянна. [c.555]

    Модели замороженного течения пригодны для расчетов критической скорости потока, но менее эффективны при расчетах коэффициента критического давления т (отношение давления в горлоштс сопла к давлению потока вверх но течег)ию). Одной из ] аиболес н]ироко используемых моделей для двухфазно]о критического потока является модель Генри—Фауске 164], согласно которой профиль температур от некоторой точки вверх по потоку до горловины связан с политропным расширением газовой фазы, что позволяет описать процесс массопереноса (испарения) посредством эмпирического выражения. Это дает возможность рассчитать локальное расходное массовое газосодержание в горловине сопла. [c.202]

    Распределительная хроматография основана на распределении вещества между подвижной жидкой или газовой фазой и неподвижной жидкой фазой, закрепленной на твердой фазе (носитель) путем полимолекулярпой адсорбции. В первом случае распределение происходит за счет растворения компонентов газовой смеси в адсорбированной пленке жидкости. Соотношение между концентрацией компонента в пленке адсорбированной жидкой фазы и концентрацией (парциальным давлением) его в газовой фазе при условии равновесия между подвижной и неподвижной фазами определяется законом Генри ( 13.3). Поскольку растворимость газов и паров сильно зависит от природы растворителя, то варьирование жидкой фазы представляет практически неисчерпаемые возможности для подбора условий разделения летучих веществ, Распределительная газовая хроматография обычно называется газожидкостной (ГЖХ). [c.338]

    Закон Генри соблюдается только для разбавленных растворов и при малых давлениях, когда газы следуют законам идеаль-1ШХ гязоВ. Закон Генри не подтверждается опытом, если молекулы газа взаимодействуют с жидкостью и испытывают превращения в виде диссоциации, ассоциации и т. д. Например, растворение НС1 и NH3 в воде. В этих случаях закон Генри надо применять отдельно к каждому роду молекул (например, к простым молекулам в газовой фазе и молекулам газа, не претерпевшим превращения в жидкости). [c.138]

    Адсорбции изотерма (159, 160)—зависимость адсорбции от давления адсорбата в газовой фазе (или от концентрации в объеме) при постоянной температуре. Для однородной поверхности адсорбента и в отсутствие взаимодействия молекул адсорбата между собой описывается уравнением Ленгмюра (160—163). Для энергетически неоднородной поверхности (168) описывается уравнением Фрейндлиха (166) или уравнением логарифмической изотермы адсорбции (166, 169). При наличии межмолекулярного взаимодействия описывается соотношениями (167, 170, 171). Начальные участки многих изотерм адсорбции описываются линейным уравнением Генри (166). Изотермы полимолекулярной адсорбции приближенно описываются уравненинем БЭТ (175). [c.307]

    Отличие от парожидкостного равновесия заключается в том, что газ находится в надкритической области (не конденсируется) и слабо растворяется в жидкости. В этих условиях жидкая фаза по отношению к гагювому компоненту стремится к идеальному состоянию. Кроме того, при умеренных давлениях неидеальность газовой фазы также не шачительна. Тогда справедлив закон Генри  [c.36]

    СТИ ОТ давления логарифма отношения летучести растворенного газа на кривой сосуществования фаз (1д f"/N ) В этих построениях летучесть газа на линии сосуществования рассчитывалась по данным о летучести чистого газа и молярной доле воды по уравнению ( /11.4), поскольку при не очень высоких температурах и высоких давлениях содержание водяного пара в газовой фазе невелико. При соблюдении закона Генри в термодинамической формулировке указанная зависимость обычно представляет собой прямую линию, наклон которой пропорционален парциальному молярному объему растворенного в воде газа, а значение lgf /N. ) при давлении пара воды (р ) равно логарифму коэффициента Генри (см. гл. VI). Описанное построение позволяет приближенно найти коэффициент Г енри растворенного в воде газа. Полученные таким образом коэффициенты Генри наряду с коэффициентами Генри, рассчитанными по результатам исследований первой группы, включены в табл. 30. [c.47]

    Такие газы как СО , H S, С1 , H I, SO , NH и другие могут переходить в воде в диссоциированные частицы. Вопрос о соблюдении закона Генри в этом случае усложняется. Перешедшие в воду молекулы газов существуют в ней в разных формах. Часть молекул остается в растворенном состоянии, часть переходит в соединения с водой или в ионы. Для установления количества газа, находящегося в различных формах, требуется применение сложных методов исследований, которыми обычно не пользуются. Под содержанием растворенного в воде газа обычно по-нима( т общее перешедшее в воду количество газа, независимо от того, в каких формах газ существует в воде. В этом случае коэффициент Генри, относящийся к общей стехиометрической концентрации газа в воде, может стремиться к нулю при достаточном разведении. Такое поведение коэффициента Генри проявляется только в отношении общей концентрации газа, содержащегося в воде во всех формах (диссоциированных и недиссоциированных). Разведение смещает равновесие в сторону образования диссоциированных форм. При большом разведении основная часть растворенного вещества переходит в диссоциированное состояние и концентрация недиссоциированиой формы уменьшается по сравнению с концентрацией диссоциированных форм. В отношении недиссоцииро-ванной формы закон Генри может практически соблюдаться при достаточно малых концентрациях и отношение летучести компонента в газовой фазе к молярной доле этого компонента в жидкой фазе будет оста- [c.125]


Смотреть страницы где упоминается термин Генри в газовой фазе: [c.252]    [c.186]    [c.73]    [c.435]    [c.192]    [c.5]    [c.333]    [c.383]    [c.277]    [c.150]    [c.45]    [c.245]    [c.247]   
Курс газовой хроматографии (1967) -- [ c.35 ]

Курс газовой хроматографии Издание 2 (1974) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая фаза

Генри



© 2025 chem21.info Реклама на сайте