Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разряд линейный

    Из равенства (6.2.28) следует, что ток разряда линейно растет с перенапряжением на счетчике. [c.83]

    Концентрация амальгамы и концентрация комплексного иона в приэлектродном слое зависят от тока разряда линейно. В силу этого можно записать выражение для полярографической волны в случае комплексообразования в таком виде  [c.131]

    Помимо вышеперечисленных существуют разряды статического электричества, воспламеняющая способность которых несущественна. К ним относятся разряды, линейные размеры которых много меньше диаметра критического ядра пламени. [c.126]


    На рис. 66 показана зависимость заряда, переносимого в единичном разряде, от расстояния между наэлектризованной поверхностью диэлектрического диска и заземленным шаром. Заряд, переносимый в разряде, линейно возрастает с увеличением расстояния между диэлектрической поверхностью и электродом. Электроду большего диаметра соответствуют большие величины заряда в разряде. Экспериментальные точки на кривых представляют собой средние арифметические значения эмпирических кривых распределения. [c.136]

    При разряде в кислородно-озонных смесях напряжение горения разряда линейно связано с концентрацией озона (до 7% по объему озона в смеси). Экстраполяция экспериментальных данных позволяет определить Е1р для чистого кислорода и для озона в кислородно-озонных смесях. Величина Е р в положительном столбе при разряде в кислороде составляет 21 в см - мм рт. ст., а для озона 100 в/см-мм рт. ст. Если пренебречь потерями энергии при упругих соударениях и считать, что основными неупругими процессами являются следующие  [c.80]

    В пылеочистительной технике большое распространение получили циклоны различных конструкций, однако принцип их работы одинаков и основан на использовании центробежной силы. В циклонах линейная скорость пылегазовой смеси колеблется в пределах 15—20 м/с. Пыли имеют большую электроемкость и способны приобретать заряды статического электричества в результате адсорбции ионов газа, трения, ударов частиц друг о друга. При транспортировании пыли электрический потенциал возрастает с ростом скорости движения газа. При скорости угольной пыли свыше 2,25 м/с потенциал достигает 7500 В. Мощные заряды статического электричества могут создаваться в пылеобразующих материалах при транспортировании их по трубам и при перемещении в циклонах с высокой скоростью. При разряде статического электричества могут образовываться искры, способные воспламенить пылевоздушные смеси. Поэтому при устройстве и эксплуатации средств пневмотранспорта и сепарации пыли в циклонах следует принимать эффективные меры, предупреждающие накопление больших зарядов статического электричества и образование пылевоздушных смесей взрывоопасных концентраций. [c.156]

    Предложено много теорий перенапряжения водорода, из которых можно было вывести эмпирические зависимости (линейную и логарифмическую) перенапряжения водорода от катодной плотности тока наиболее важными и общепризнанными являются две теории теория замедленного разряда и-теория замедленной рекомбинации. [c.252]


    Изучение явлений, связанных с сильной поляризацией обратных и прямых эмульсий (капель касторового масла в среде ПМС-100 и капель ПМС-100 в среде касторового масла), позволило обнаружить различие в их поведении. Скорость капель (д<0,5 10" м) обратных эмульсий значительно возрастает в приэлектродных областях. Контакт их с электродом приводит к возникновению колебания в межэлектродном пространстве. Частота колебания имеет затухающий характер. Это можно объяснить электрохимическим разрядом растворимых в капле (касторового масла) катионов и анионов жирных кислот. Движение капель прямых эмульсий при подходе к электроду, наоборот, замедляется и полностью прекращается на некотором расстоянии от электрода. Зазор между электродом и каплей 5 при ее остановке сокращается с повыще-нием Е. Остановку капли у электрода (эффект расклинивания) можно объяснить диэлектрическим перемещением молекул более полярной среды в неоднородную область поля. Экспериментальная зависимость скорости движения капли прямой эмульсии от напряженности поля показывает, что при низких значениях Е зависимость имеет линейный характер, при Е>2 10 В/м характер зависимости меняется. Аналитическая обработка экспериментальных данных по уравнению Духина для скорости частицы показывает, что зависимость 1 наблюдается только в области значений ">3 10 В/м. [c.23]

    Моделирование на универсальной ЦВМ выполняет анализ ошибок округления путем многократного решения задачи при каждом расчете разрядность вычислений уменьшается на один разряд. При достаточно сложных вычислениях погрешности округления ведут себя следующим образом до некоторой (критической) разрядности они практически не влияют на точность вычислений, а при разрядности, меньшей, чем критическая,— совершенно искажают результаты. Это предположение было подтверждено экспериментально на задачах линейного программирования и регрессионного анализа (см., например, [6]). [c.18]

    Возбуждение спектров в ИСП-разряде позволяет определять содержание примерно 70-ти элементов периодической системы, включая и такие, как фосфор, сера, бор, мышьяк, олово. Интервал определяемых концентраций 10- °—10- г/мл, воспроизводимость определений характеризуется значением относительного стандартного отклонения 0,001—0,03, градуировочные графики линейны в пределах 4—6 порядков концентрации. [c.65]

    Примесей из анодного пространства было исключено применением анодов из электролитического никеля). Увеличение подачи в диафрагму раствора, содержащего Си + и Ре2+, вызывает обогащение ими катодного осадка. Тангенс угла наклона линейных зависимостей растет с повышением концентрации примесей в растворе. Следует отметить, что- железо переходит в катодный осадок в меньшей степени, чем медь. При равных концентрациях Сц2+ и Ре2+ Б растворе содержание железа в катоде примерно в 3 раза ниже содержания меди. Линейная зависимость содержания меди в осадке от скорости подачи. раствора является в сущности зависимостью от концентрации примесей в катодном пространстве. Это указывает на то, что разряд этих ионов совершается в режиме диффузионной кинетики и протекает в условиях предельного тока для них. [c.328]

    При изучении надмолекулярной структуры полимеров методом электронной микроскопии наименьшие искажения получаются при травлении полимеров в плазме высокочастотного кислородного разряда. Это дает возможность оценить соотношение между объемом, занимаемым упорядоченными микрообластями (микроблоками структуры) независимо от их природы, и неупорядоченной частью полимера (свободные цепи и сегменты), а также средний линейный размер микроблоков. Например, для эластомеров при комнатной температуре характерна объемная доля микроблоков примерно 20%. Это значит, что 80% по объему занимают свободные цепи и сегменты, ответственные за высокую эластичность этих материалов. Средний линейный размер структурных микроблоков 10—30 нм, что соответствует типичным размерам частиц в коллоидных системах. Малое различие в плотностях упорядоченных и неупорядоченных микрообластей (1—2%) является причиной того, что применение дифракционных методов для исследования структуры аморфных эластомеров не всегда эффективно. Некоторые полимеры в блоке характеризуются глобулярной структурой (рис. 1.12) с размерами микроблоков 12—35 нм. [c.27]

    В 1905 г. И. Тафель провел определение скорости электрохимической реакции ввделения водорода на различных металлах и установил линейное соотношение между потенциалом электрода и логарифмом скорости процесса. Формула Тафеля явилась первым законом электрохимической кинетики. Н. И. Кобозев и Н. И. Некрасов (1930) указали на роль энергии адсорбции атома водорода в кинетике разряда ионов водорода на электродах. Эти работы, однако, не привели к выделению электрохимической кинетики в самостоятельный раздел науки, так как в кинетике электродных реакций авторы не увидели ничего специфически электрохимического. Предполагалось, что скорость выделения водорода определяется не электрохимической стадией перехода электрона от металла к иону гидроксония, а некоторой химической стадией, которая входит как звено в суммарный процесс. В качестве такой стадии И. Тафель рассматривал рекомбинацию атомов водорода в молекулу водорода, а Н. И. Кобозев и Н. И. Некрасов — сочетание различных стадий удаления адсорбированных атомов водорода. [c.10]


    Иногда для осциллополярографических измерений применяют электрод в виде периодически сменяемой ртутной капли. Для этого устье капилляра закрывают иглой из нержавеющей стали. Игла прикреплена к железной пластинке, над которой расположен электромагнит. Включая электромагнит при помощи реле на определенное время, получают на конце капилляра каплю со строго воспроизводимыми размерами. При измерениях на висячей капле можно существенно уменьшить скорость наложения потенциала, что позволяет повысить чувствительность осциллографической поляро- графии. Кроме того, висячую кап- " лю применяют в так называемой полярографии с накоплением, ко-торая используется для определе- (-Г ния ультрамалых количеств катионов металлов в растворах. Для этого висячей капли подбирают таким образом, чтобы определяемые катионы могли разрядиться с образованием амальгамы, а затем линейно смещают потенциал капли в анодную сторону и измеряют ток анодного растворения амальгамы. Поскольку время предварительного электролиза на висячей капле можно в принципе выбрать сколь угодно большим, то можно накопить на электроде определяемое вещество, концентрация которого в растворе лежит за пределами чувствительности обычного полярографического метода или других его разновидностей. [c.207]

    Чувствительность осциллографической полярографии близка к чувствительности классической и переменноточной полярографии в аналогичных условиях. Для определения ультрамалых количеств катионов металлов в растворах применяют осциллографическую полярографию с накоплением, или инверсионную полярографию. Для этого висячей капли (или какого-нибудь индифферентного электрода) выбирают таким образом, чтобы определяемые катионы могли разрядиться с образованием амальгамы или металлического осадка на поверхности твердого электрода, а затем линейно [c.234]

    Уравнение (4.40) было выведено с учетом уравнения Нернста (4.7), которое применимо, если не нарушено равновесие стадии разряда — ионизации. Поэтому для доказательства диффузионной природы тока важным критерием является вытекающая из уравнения (4.40) линейная зависимость Е от 1п((/й — /)//] с тангенсом угла наклона ЯТ/пЕ. По тангенсу угла наклона можно определить число участвующих в реакции электронов п. Для электродных процессов, скорость которых лимитируется диффузионной стадией, потенциал полуволны не зависит от концентрации электрохимически активного вещества, и получается одна и та же величина Е / анодного и [c.229]

    Т. е. вблизи равновесного потенциала поляризационная характеристика линейна. При больших анодных перенапряжениях анодный ток достигает предельной величины , которая определяется природой химической реакции и состоянием поверхности электрода и не зависит от скорости размешивания раствора. Если медленная гетерогенная химическая реакция предшествует стадии разряда, то в таких условиях предельный кинетический ток, равный г о, должен наблюдаться на катодной поляризационной кривой, а анодная кривая должна удовлетворять тафелевской зависимости (Vni.97). [c.244]

    Чувствительность осциллографической полярографии близка к чувствительности классической и переменноточной полярографии в аналогичных условиях. Для определения ультрамалых количеств катионов металлов в растворах применяют осциллографическую полярографию с накоплением, или инверсионную полярографию. Для этого Еп висячей капли (или какого-нибудь индифферентного электрода) выбирают таким образом, чтобы определяемые катионы могли разрядиться с образованием амальгамы или металлического осадка на поверхности твердого электрода, а затем линейно смещают потенциал электрода в анодную сторону и измеряют ток анодного растворения определяемого металла. При достаточно большом времени предварительной выдержки можно накопить на электроде определяемое вещество, концентрация которого в растворе лежит за пределами чувствительности обычного полярографического метода. [c.282]

Рис. 7.8. Схема установки для травления полимеров в линейном высокочастотном безэлектродном газовом разряде Рис. 7.8. <a href="/info/13990">Схема установки</a> для <a href="/info/128655">травления полимеров</a> в линейном <a href="/info/367582">высокочастотном безэлектродном</a> газовом разряде
    Травление полимера проводят на установке линейного без-электродного высокочастотного разряда согласно инструкции по проведению работы на этой установке. Полимерный образец с чистотой поверхности V —У8, укрепленный на предметном стек- ле, помещают в разрядную камеру и подвергают вакуумированию в течение 10—15 мин для удаления адсорбционной влаги и посторонних веществ. После достижения предельного разрежения в камеру вводят рабочий газ, например кислород, и следят, чтобы вакуум в камере был не ниже 0,667—66,7 Па (5-10 —5-10 мм рт. ст.). Затем включают и настраивают на заданный режим работы генератор ВЧ колебаний. Режим работы генератора ВЧ зависит от его выходных параметров. Через каждые 10—15 мин работы генератора его необходимо отключать на 5—7 мин для более полного удаления продуктов деструкции с поверхности объекта травления и из разрядной камеры, а также для предотвращения возможного нагрева образца. Удаление верхнего слоя и достижение необходимой рельефности поверхности полимера достигается через 45— 60 мин активного времени работы установки. При правильном подборе параметров работы установки температура поверхности образца составляет 30—40°С, а оптимальная концентрация электронов составляет примерно от 10 до 10 см . Для оценки режима травления обычно подвергают контрольному травлению полимер с известной морфологией. Полученное изображение структурной организации полимера сравнивают с известным. [c.115]

    Методика работы. Образцы закрепляют на предметном стекле в строго определенном положении и подвергают травлению с помощью линейного безэлектродного высокочастотного газового разряда (рабочий газ—кислород). На обработанную поверхность напыляют углерод (угол оттенения 30°). При этом обязательно регистрируют направление напыления и предпочтительное совпадение направлений силового поля и напыления. Удаляют реплику с поверхности полимера, промывают ее, просушивают и укладывают на медную сетку, которую укрепляют в специальном патроне. Патрон с репликой через камеру объектов вводят в колонну (работа [c.117]

    На рис. 3-28 показана зависимость заряда, переносимого в единичном разряде, от расстояния между наэлектризованной поверхностью диэлектрического диска и заземленным шаром. Заряд, переносимый в разряде, линейно возрастает с увеличением расстояния между диэлектричешой поверхностью и электродом. Электроду ббльшего диаметра соответствуют большие величины заряда в разряде. [c.117]

    Полиэтиленовая пленка активируется при непрерывном процессе,, использующем метод коронного разряда. Линейная скорость движения пленки через аппарат 50,6 см сек, степень активации 0,7. Определить степень активации при скорости 76 см1сек. [c.187]

    СОМ будет ионизация адсорбированного водорода с переходом его в раствор. Таким образом, эта область потенциалов отвечает только стадии разряда (при катодном толчке) и ионизации (при анодном толчке), что позволяет исследовать кинетику одной этой стадии без наложения осложняющих эффектов, связанных с процессами рекомбинации или диссоциации молекул водорода. Изучение зависимости емкости двойного слоя и омического сопротивления (эквивалентного торможению па стадии разряда) от частоты наложенного тока в этой области потенциалов позволило Долину, Эрш-леру и Фрумкину впервые непосредственно измерить скорость акта разряда. Параллельные поляризационные измерения при небольщих отклонениях от равновесного потенциала, где неренапряжение еще линейно зависит от плотности тока, дали возможность найти скорость суммарного процесса и сопоставить ее со скоростью стадии разряда. Было установлено, что акт разряда протекает с конечной скоростью, причем ее изменение с составом происходит параллельно изменению скорости суммарной реакции. В то же время скорость стадии разряда всегда больше, чем скорость суммарной реакции (в 27 раз в растворах соляной кислоты и в И раз в растворах гидроксида натрия). Таким образом, акт разряда хотя и протекает с конечной скоростью, но не определяет скорости всего процесса выделения водорода на гладкой платине и не является здесь лимитирующей или замедленной стадией. [c.416]

    Стандартный метод [345], используемый в США, применим к маслам нефтяного происхождения для использования в кабелях, трансформаторах, автоматических масляных выключателях и т. д. Масла с высокой степенью чистоты показывают то же самое значение при стандартных условиях от 30 до 35 кв. Для алканов [346] было показано, что диэлектрическая сила линейно увеличивается с плотностью жидкости. Для и-гептана было найдено соотношение между диэлектрической силой и изменением плотности с телтера-турой. Существует много причин, по которой диэлектрическая сила изолятора ослабевает самые важные, по-видимому, связаны с присутствием определенных примесей [347], полученных в результате коррозии, окисления, термического или электрического крекинга или газообразного разряда попадание воды является общеизвестной причиной аварий. [c.206]

    Р-матрицы, появляющиеся в стандартном блочном гауссовском исключении (алгоритм Томаса), являются решениями третичных линейных подсистем. Они должны быть сохранены для обратной подстановки при решении вторичных линейных подсистем, однако, как только одна из вторичных подсистем решена, память может быть освобождена. Следовательно, если число В-матриц на диагонали наибольшей БТДФ есть р, число ячеек памяти, которое должно быть выделено для матрицы вторичной подсистемы, есть (р - 1) кЬ (где к= 2С + I - размерность матрицы В I - число ненулевых столбцов в С-матрицах). Матрицы правых частей вторичных подсистем на рис. 5.6 имеют либо ненулевые младшие элементы, либо ненулевые старшие элементы, либо не имеют ненулевых элементов. Для снижения количества расчетов каждая вторичная подсистема может быть уменьшена по строкам сверху вниз или снизу вверх, в зависимости от того, имеет ли правосторонняя матрица младшие или старшие ненулевые разряды. Если матрица правых частей не имеет ненулевых элементов, экономия в расчетах нереализуема. [c.259]

    В 1905 г. Ю. Тафель провел определение скорости электрохимической реакции выделения водорода на различных металлах и установил линейное соотношение между потенциалом электрода и логарифмом скорости процесса. Формула Тафеля явилась первым законом электрохимической кинетики. Н. И. Кобозев и Н. И. Некрасов (1930 г.) указали на роль энергии адсорбции атома водорода в кинетике разряда ионов вбдорода на электродах. Эти работы, однако, не привели к выделению электрохимической кинетики в самостоятельный раздел науки, так как в кинетике электродных реакций авторы не увидели ничего специфически электрохимического. Предполагалось, что скорость выделения водорода определяется не электрохимической стадией перехода электрона от металла к иону гидроксония, [c.11]

    Таким образом, при малых перенапряжениях поляризационная характеристика электродного процесса, лимитируемого стадией разряда — ионизации, линейна. Соотношение (VIII.50) внешне аналогично закону Ома. Величина [c.189]

    Линейную зависимость т] от Igгф впервые наблюдал И. Тафель (1905) для реакции разряда ионов Н3О+ на различных электродах  [c.217]

    Для развития теории влияния ПАОВ на стадию разряда — ионизации электрохимических реакций большое значение имеют данные, полученные при различных температурах, поскольку из них можно рассчитать соответствующие изменения теплоты, свободной энергии и энтропии активации, вызванные адсорбцией ПАОВ. Для корректной трактовки кинетических данных необходимы параллельные исследования по влиянию температуры на адсорбцию ПАОВ. Наиболее полные данные по влиянию температуры на адсорбцию ПАОВ и ингибирование ими реакций восстановления катионов С<12+, РЬ +, 2п +, Еи + на ртутном и амальгамных электродах были получены Ф. И. Даниловым и С. А. Па-насенко. Ими показано, что энтальпия адсорбции АЯа не зависит от степени заполнения поверхности ПАОВ, тогда как свободная энергия адсорбции АОд линейно изменяется с ростом 0. Следовательно, рост абсолютной величины АСа происходит за счет увеличения энтропии адсорбции Д5а- [c.170]

    В соответствии с этими представлениями для разряда ионов Сс12+, 2п + и Си + в присутствии некоторых ПАОВ была получена линейная зависимость 1п в от величины двумерного давления Да. [c.172]

    Установка травления полимеров в Пинцет линейном безэлектродном высо- Разрывная машина РМ-250 кочастотном газовом разряде Отсчетная линейка [c.117]


Смотреть страницы где упоминается термин Разряд линейный: [c.74]    [c.173]    [c.75]    [c.338]    [c.164]    [c.220]    [c.338]    [c.191]    [c.195]    [c.249]    [c.38]    [c.174]    [c.225]    [c.232]   
Электрооборудование электровакуумного производства (1977) -- [ c.170 ]




ПОИСК







© 2025 chem21.info Реклама на сайте