Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальций в мышцах

    Нахождение в природе. В природе фосфор встречается только в виде соединений, важнейшее из них — фосфат кальция — минерал апатит. Известно много разновидностей апатита, из которых наиболее распространен фторапатит ЗСаз(Р04)2-СаРг. Разновидности апатита слагают осадочные горные породы — фосфориты. Фосфор входит также в состав белковых веществ в виде различных соединений. Содержание фосфора в тканях мозга составляет 0,38 %, в мышцах — 0,27 %. [c.118]


    Вследствие высокой химической активности фосфор в свободном виде в природе не встречается. В почве и в горных породах он содержится в виде солей фосфорной кислоты, преимущественно в виде фосфата кальция Саз(Р04)г. В виде соединений фосфор входит в состав костной, мышечной и нервной тканей человека и животных. В скелете фосфор содержится в виде фосфата кальция — эта соль и придает скелету твердость. В нервной и мышечной тканях фосфор содержится в виде органических соединений. Работа мозга, сокращение мышц связаны с химическими превращениями этих соединений. Фосфор играет таким образом исключительно большую роль во всех жизненных процессах. Выдающийся советский геолог академик А. Е. Ферсман назвал его элементом жизни и мысли . [c.72]

    Процессы, происходящие в коре больших полушарий, чрезвычайно сложны и мало исследованы. Мы все еще не знаем, каким образом мозг инициирует произвольные движения мышц. Установлено, однако, что сигналы, выходящие из мозга по направлению к мышцам по эфферентным волокнам, генерируются в больших моторных нейронах двигательной зоны коры эта зона расположена в виде полосы, идущей через весь мозг и прилегающей к сенсорной зоне (рис. 16-5). Аксоны моторных нейронов образуют пирамидный тракт, проводящий импульсы вниз к синапсам в спинном мозгу и оттуда к нервно-мышечным соединениям. Последние представляют собой специализированные синапсы, в которых происходит высвобождение ацетилхолина, передающего сигнал непосредственно мышечным волокнам. Волна деполяризации, проходящая по поверхности клетки и Т-трубочкам (гл. 4, разд. Е, 1 рис. 4-22, Д), инициирует высвобождение кальция и сокращение мышцы. [c.329]

    Все природные соединения кальция, особенно карбонаты, служат источниками получения медицинских препаратов кальция, причем чаще используют для этой цели мрамор как наиболее чистый, свободный от примесей материал. Кальций играет важную роль в жизнедеятельности организма. Он входит в состав зубной ткани, костей, нервной ткани, мышц, крови. Ионы кальция усиливают жизнедеятельность клеток, способствуют сокращению скелетных мышц и мышцы сердца, необходимы для формирования костной ткани и процесса свертывания крови. [c.117]

    С уменьшением концентрации ионов кальция в крови повышается возбудимость мышц, что нередко приводит к судорогам. Растворы солей кальция снимают зуд, вызванный аллергическим состоянием, поэтому их относят к антиаллергическим средствам. [c.117]


    Если полностью удалить регуляторные белки из актиновых фибрилл, то сокращение будет продолжаться до тех пор, пока не истощится запас АТР. В присутствии же регуляторных белков и в отсутствие кальция блокируется как сокращение, так и гидролиз АТР. Рабочая гипотеза, объясняющая функционирование этой системы [93, 94], постулирует, что вытянутые палочки тропомиозина входят в бороздки между актином и миозиновыми головками [92]. На рис. 4-24 схематически представлена структура комплекса актомиозин-тропомиозин (вид сверху). Головка (S1) молекулы миозина присоединена к одной из субъединиц актина. В покоящейся мышце тропомиозин присоединен к актину около того места, с которым связан S 1-участок миозина. В результате палочка тропомиозина блокирует присоединение Sl-поперечных мостиков миозина к актину и предотвращает стимулируемый актином гидролиз АТР. Молекула тропомиозина, длина которой составляет 41 нм, контактирует одновременно с семью субъединицами актина [95]. Таким образом, комплекс тропомиозин — тропонин синхронно контролирует работу семи субъединиц актина. [c.325]

    Са При нервной стиму/гации мышцы освобождается ион кальция [c.508]

    Состав неорганических солей в мышцах разнообразен. Из катионов больше всего калия и натрия. Калий сосредоточен главным образом внутри мышечных волокон, а натрий—преимущественно в межклеточном веществе. Значительно меньше в мышцах магния, кальция и железа. В мышечной ткани содержится ряд микроэлементов кобальт, алюминий, никель, бор, цинк и др. [c.652]

    Содержание АТФ и креатинфосфата в клетке резко снижается в результате нарушения окислительного фосфорилирования в митохондриях. Одно из первых проявлений этого состояния—нарушение мембранной проницаемости. Нарушение целостности мембран способствует выходу из клетки ионов, в том числе ионов К, а также ферментов. Дефицит энергетических ресурсов и нарушение ионного состава, существенные изменения различных мембранных резервуаров , обеспечивающих контроль за уровнем внутриклеточного кальция, обусловливают торможение функциональной активности мышечных клеток и их постепенную гибель. В этот же период выявляются изменения состава белков миокарда (резкое снижение содержания миофибриллярных белков и накопление белков стромы). Нарушение обмена углеводов, белков и липидов (свободные жирные кислоты не окисляются, а преимущественно включаются в триглицериды) при инфаркте миокарда находит отражение в жировой инфильтрации сердечной мышцы. [c.660]

    Фосфор — один из важных элементов для живых организмов. Тело человека в среднем возрасте содержит около 1600 г фосфора в пересчете на оксид фосфора РаОв, в том числе около 1400 г в костях, 130 г в тканях мышц, 12 г в мозге, 10 г в печени, 6 г в легких, 44 г в крови. Без фосфора невозможно образование хлорофилла и усвоение растениями углекислого газа. Признаки недостатка фосфора в растениях темно-зеленая, голубоватая, тусклая окраска листьев с появлением при отмирании черных пятен, задержка фаз развития растений (цветения и созревания), угнетенный рост, утолщение клеточных стенок. Поэтому фосфор входит в состав ферментов, витаминов, внесение фосфорных удобрений в почву не только повышает урожай, но и улучшает качество продуктов. Начало промышленному производству фосфорных удобрений положено работами Ю, Либиха. Он предложил превращать нерастворимый в воде фосфат кальция действием серной кислоты в водорастворимый, легкоусвояемый растениями дигидрофосфат кальция. Первоначально сырьем для его получения служили кости животных, но уже в 1857 г. Ю. Либих показал, что столь же хорошее удобрение получается при обработке серной кислотой минеральных фосфатов. [c.161]

    М) поступают ионы кальция, вызывающие различные биореакции, и в том числе сокращение гладких мыщц сосудов (рис. 7). Нормальный обратный отток отработавших ионов кальция против фадиента концентраций обеспечивается ферментом кальций-АТФазой (кальциевым насосом, использующим энергию АТФ, получаемую по реакции Enz +АТФ Enz-Ф + + АДФ + Е). При нарущениях их обратного транспорта из клетки или при слишком интенсивном их поступлении внутрь ее возникает гипертония, увеличивается нафузка на сердечную мышцу, что может привести к инфаркту миокарда. Дигидропи-ридины (ДГП) взаимодействуют со своими рецепторами (ДГП-рецепторы), которые, по-видимому, расположены в непосредственной близости к кальциевым каналам и блокируют последние. Это приводит к резкому уменьшению поступления ионов кальция в клетку и, таким образом, к расслаблению мышцы кровеносного сосуда, снижению давления и облегчению работы сердца при ишемической болезни и инфарктах. [c.127]

    Кальций является одной из составных частей живопюго организма. Ои входит в состав костей и зубов содержится в нервной ткани, в мышцах, крови, влияет на свертываемость крови. 0)ли кальция поступают в организм с пищей в достаточных количествах, одиако при ряде заболеваний организм теряет способность их усваивать. В некоторых случаях это связано с недостатком в организме витамина О (при рахите). [c.76]


    Биологам и медикам хорошо известно, что важную роль в организме человека играют гликозиды. Некоторые природные гликозиды (извлекаемые из растений) активно действуют на сердечную мышцу, усиливая сократительные функции и замедление ритма сердца. При попадании в организм большого количества сердечного гликозида может произойти полная остановка сердца. Ионы некоторых металлов влияют на действие гликози-дов. Например, при введении в кровь ионов магния действие гликозидов на сердечную мышцу ослабляется. Ионы кальция, наоборот, усиливают действие сердечных гликозидов. [c.171]

    Идея применения комплексообразуюш,их агентов с целью уменьшения патологического отложения соединений кальция в мягких тканях мышцах, почках, стенках вен, склеродерме и др. — является закономерным следствием развития координационной химии. Способность карбоксилсодержаш,их комплексонов образовывать растворимые комплексы с кальцием использовали для растворения камней при мочекаменной болезни методом восходящего литолиза [962, 963], в терапии костных заболеваний [964], для десорбции кальция из роговой оболочки глаза [965] и при растворении зубных камней [931]. Однако применение этих комплексонов ограничено некоторыми побочными явлениями, возникающими при лечении [966, 967], что заставило обратиться к поиску других хелантов. [c.497]

    В специальных кальций-связывающих белках, или парвальбуми-нах , ион Са + связан как с амидной группой, так и с кластером карбок-силат-ионов. Установлена трехмерная структура такого белка из мышцы карпа (рис. 4-5). В этом белке имеется два центра связывания для кальция. В одном из них (рис. 4-5, Л, слева) ион Са + связан с четырьмя карбоксильными группами боковых цепей остатков аспарагиновой и глутаминовой кислот, с гидроксильной группой остатка серина, а также с карбонильным кислородом 57-го остатка пептидной цепи. Заметим, что эта Же самая пептидная группа связана водородной связью с карбонильной группой другого сегмента полипептидной цепи, расположенного рядом со вторым центром связывания иона Са + (рис. 4-5, Л справа). Этот центр содержит четыре карбоксилат-иона (один из которых осуществляет координационное связывание иона a + обоими ато-мами кислорода) и карбонильную пептидную группу. Значение данной [c.268]

    РИС. 4-5. А. Часть полипептидной цепи кальций-связывающего белка мышцы карпа, содержаш,ей 108 аминокислотных остатков. Показаны две петли, связывающие ионы кальция, и водородная связь между ними. Б. Система водородных связей, связывающих два сегмента полипептидной цепи внутри молекулы. Обратите внимание на связь между гуанидиновой группой остатка аргинина (75) и карбоксилатом остатка глутаминовой кислоты (81), а также карбонильной группой пептидной связи 18-го остатка. Обратите внимание и на то, что карбоксилат взаимодействует также с двумя пептидными NH-группами [32, 32а]. [c.269]

    Белок актин обладает специфическими, только ему присущими свойствами. Нативный фибриллярный F-актин (рис. 4-7) построен из мономерных субъединиц с мол. весом - 43 000, каждая из которых состоит из 374 аминокислотных остатков. Интересно, что в молекулах актина в положении 73 содержится остаток N -метилгистидина. В среде с низкой ионной силой в присутствии АТР нити актина могут растворяться, образуя мономерный G-актин. Каждая молекула G-актина содержит обычно одну молекулу связанного АТР и ион кальция. Добавление в раствор Mg + до концентрации 1 мМ нли КС1 (0,1 М) приводит к спонтанному образованию нитей, сходных с тонкими нитями мышцы, каждая из которых содержит 340—380 мономерных молекул актина. АТР при этом гидролизуется, а ADP остается связанным с нитями F-актнна. Поражает удивительное сходство этого процесса со связыванием нуклеотидов с субъединицами микротрубочек (дополнение 4-А) и событиями, происходящими при сокращении отростка фага (дополнение 4-Д). [c.323]

    Характерная функция ионов Са + у живых существ состоит в способности активировать различные метаболические процессы. Это происходит при резких -изменениях проницаемости плазматических мембран или мембран эндоплазматического ретикулума, в результате которых становится возможной диффузия ионов Са + в цитоплазму. Так, например, при сокращении мышцы в результате освобождения ионов Са + из эндоплазматич0окого ретикулума его концентрация увеличивается приблизительно от 0,1 до 10 мкМ . Связывание ионов Са + с тропонином С инициирует сокращение (гл. 4, разд. Е.1) . Мембраны эндоплазматического ретикулума мышечного волокна содержат большое количество белка кальциевого пасоса, а также ряд белков, связывающих кальций (гл. 4, разд. В.8.в) . Один из Са +нсвязывающих белков мышцы кролика, кальсеквестрин (мол. вес 46 500), способен связывать до 43 молей Са + на моль белка"  [c.373]

    В то время как свойства белковых ансамблей, обнаруженных в мышцах, описаны со многими интересными подробностями (гл. 4, разд. Е,1), остается открытым наиболее важный вопрос каким образом мышечная машина использует свободную энергию гидролиза АТР для совершения механической работы На основании данных электронной микроскопии и дифракции рентгеновских лучей было установлено, что в состоянии окоченения все поперечные мостики, образуемые мнозиновыми головками, оказываются прочно прикрепленными к тонким нитям актина. Добавление же АТР приводит к мгновенному отсоединению мостиков от тонких нитей. В расслабленной мышце тонкие нити могут свободно двигаться на участках, прилегающих к толстым нитям, что придает мышце свойство слабо натянутой резиновой полоски. Однако активация мышцы под действием нервного импульса, сопровождаемая освобождением ионов кальция (гл. 4, разд. Е,1), заставляет тонкие нити скользить между толстыми, приводя в результате к укорочению мышцы. [c.415]

    Кортизон и его синтетические аналоги, такие, как преднизолон или дексаметазон, принадлежат к числу современных чудодейственных средств . Их применяют при острых приступах артрита, при тяжелых воспалениях глаз и других органов. Однако продолжительное использование этих препаратов может вызвать тяжелые побочные явления, в частности атрофию мышц и резорбцию костей. Последнее возникает в результате специфического торможения абсорбции кальция в желудоч-ио-кишечном тракте под влиянием указанных средств. Таким образом, в этом отношении глюкокортикоиды являются антагонистами витамина О (дополнение 12-Г). [c.586]

    Кальциевый насос — типичный хорошо исследованный мембранный белок. Саркоплазматический ретикулум из мышц [701, 702] представляет собой трубчатую систему с высокоспецифической мембраной, единственная функция которой состоит в освобождении и накоплении ионов кальция [703, 704]. Это отражается в том обстоятельстве, что один белок с молекулярной массой 100 ООО так называемый Са -транспортирующая АТРаза или Са +-насос, составляет более 50 о массы мембраны и 80% общего содержания белков в мембране. Этот белок, представляющий собой цилиндр диаметром [c.267]

    МОЖНО воспользоваться кинетическими данными. Константы стабильности М -нуклеотидных и Са-нуклеотидных комплексов почти идентичны, но распад Са +-комплексов происходит в 1000 раз быстрее, чем соответствующих М +-комплексов [762]. Не кальций, а магний, полураспад АТР- и АОР-комплексов которого имеет порядок миллисекунд, был избран для подавления АТРазной активности миозина в состоянии расслабления мышцы и для проведения относительно медленных конформационных изменений (/1/2 > 1 мсек), которые происходят на стадиях каталитического действия АТРазы актин-активированного миозина, равно как и некоторых других ферментов [758]. [c.288]

    Цепочка событий, приводящих к смещению тропомиозина, начинается на клеточной мембране. Когда нервные импульсы активируют клетку мышцы, имеющую объем 1 мкл, ионы Са + выделяются иэ саркоплазматического ретикулума [770] в цитоплазму, где концентрация свободных ионов Са + становится на два порядка выше 1 мкм (рис. 11.7). Это приводит к насыщению тропонина С — кальций-чувствительного компонента тонкой нити [771] к молекулам тропонина С присоединяются 90% из общего количества 10 ионов. Связывание Са + вызывает конформационные изменения всего тропо-нинового комплекса [772]. При измененной структуре тропонина тропомиозин уже не может больше удерживаться в выключенном состоянии. Тропомиозиновая спираль соскальзывает в сторону к новому положению ближе к центру желоба. Таким образом, одна молекула тропомиозина освобождает семь мономеров актина, способных к взаимодействию с миозином [767, 769, 785]. [c.288]

    И наконец, следует подчеркнуть, что, по-виднмому, именно биохимические процессы в координационных соединениях кальция ограничивают скорость контроля в мышцах позвоночных. Быстродействующие наружные мышцы человеческого глаза совершают до 50 циклов сокращения — расслабления в секунду. С другой стороны,, маховые мышцы крылатых насекомых могут колебаться с частотой (в звуковом диапазоне) свыше 1000 Гц. Столь быстрые колебания основаны на таких процессах в белках, в которых ионыСа " участия не принимают, в частности на реакции АТРазы миозина на сжатие [783, 784]. [c.291]

    Недостаток витамина О в рационе детей приводит к возникновению широко известного забояевания—рахита, в основе развития которого лежат изменения фосфорно-кальциевого обмена и нарушение отложения в костной ткани фосфата кальция. Поэтому основные симптомы рахита обусловлены нарушением нормального процесса остеогенеза. Развивается остеомаляция—размягчение костей. Кости становятся мягкими и под тяжестью тела принимают уродливые О- или Х-образные формы. На костнохрящевой границе ребер отмечаются своеобразные утолщения—так называемые рахитические четки. У детей, больных рахитом, относительно большая голова и увеличенный живот. Развитие последнего симптома обусловлено гипотонией мышц. Нарушение процесса остеогенеза при ра- [c.214]

    Тропонин-глобулярный белок, открытый С. Эбаси в 1963 г. его мол. масса 80000. В скелетных мышцах взрослых животных и человека тропонин (Тн) составляет лишь около 2% от всех миофибриллярных белков. В его состав входят три субъединицы (Тн-1, Тн-С, Тн-Т). Тн-1 (ингибирующий) может ингибировать АТФазную активность, ТН-С (кальцийсвязывающий) обладает значительным сродством к ионам кальция, Тн-Т (тропомиозин-связывающий) обеспечивает связь с тропомиозином. Тропонин, соединяясь с тропомиозином, образует комплекс, названный нативным тропомиозином. Этот комплекс прикрепляется к актиновым филаментам и придает актомиозину скелетных мышц позвоночных чувствительность к ионам Са (рис. 20.6). [c.650]

    Регуляция сокращения и расслабления мыщц. Сокращение любых мышц происходит по общему механизму, описанному ранее. Мышечные волокна разных органов могут обладать различными молекулярными механизмами регуляции сокращения и расслабления, однако всегда ключевая регуляторная роль принадлежит ионам Са . Установлено, что миофибриллы обладают способностью взаимодействовать с АТФ и сокращаться в его присутствии лишь при наличии в среде определенных концентраций ионов кальция . Наибольшая сократительная активность наблюдается при концентрации ионов Са около 10 10 М. При понижении концентрации до 10 М или ниже мышечные волокна теряют способность к укорочению и развитию напряжения в присутствии АТФ. [c.657]

    Таким образом, ионы Са регулируют сократительные процессы в мышцах. По-видимому, это происходит при непосредственном участии тропонина и тропомиозина (см. с. 395). В отсутствие Са " тропинин в комплексе с тропомиозином ингибирует взаимодействие актина с миозиновыми мостиками. Кальци , поступивший в саркоплазму, связывается с тропонином и прекращает его ингибирующее действие. Следовательно, Са играет роль дерепрессора и переключает тонкую нить из неактивного в активное состояние. [c.398]

    Биохимических исследований структуры и механизма действия электрических синапсов до сих пор не проводилось. Однако щелевыми контактами связаны не только нервные клетки, но также и клетки печени, эпителия, мышц и многих других тканей. Из них удалось выделить и охарактеризовать биохимическими методами и электронной микроскопией мембранные фрагменты, которые определенно сохраняли зоны межклеточных контактов. Электронные микрофотографии показывают упорядоченные структуры частиц, которые Гудинаф назвал коннексонами [1] и которые образуют каналы между клетками, отстоящими друг от друга на 2 нм. Из этих мембран были выделены два полипептида с М 25 000 и 35 000, названные коннексинами. Возможно, что два коннексона соседних клеток посредством дпме-ризации могут образовать канал (рис. 8.1). Показано, что этот канал пропускает не только ионы щелочных металлов, но п молекулы с М 1000—2000. Таким образом, коннексоны, кроме электрического сопряжения, обеспечивают для клеток возможность обмена метаболитами. Проницаемость таких каналов могут регулировать ионы кальция. [c.189]

    Для дальнейшего изучения фармакологического действия на поперечно-полосатую мускулатуру Мессини использовал изолированную икроножную мышцу лягушки действие на гладкую мускулатуру изучалось на матках морской свинки и кошки, нижней части пищевода кошки и желудке лягушки . Мышечные сокращения, вызванные добавлением перхлората натрия к пер-фузнойной жидкости, ослаблялись при введении хлористого калия в концентрациях, меньших, чем те, которые необходимы для снижения мышечной возбудимости, и наоборот, повышение мышечного тонуса высокими дозами хлористого калия снижалось перхлоратом натрия. С другой стороны, хлориды кальция и магния олабляли сокращение мышц, вызванное перхлоратом, только [c.170]

    Бем , исследовавший действие перхлоратов натрия и калия на поперечно-полосатую мускулатуру (портняжную мышцу лягушки), заметил, что происходит два типа сокращения мышцы сначала первое—транзиторное, развивающееся сразу после погружения мышцы в исследуемый изотонический раствор н постепенно уменьшающееся в течение 5—10 мин, затем происходит второе сокращение, которое начинается через несколько минут, достигает максимума в течение 15 мин и продолжается 60 мин. Хлористый кальций в основном предупреждает первое сокращение и замедляет окончание второго сокращения. Влияние предварительного отравления (кураризации) мышцы было выяснено не полностью, но добавление раствора новокаина вслед за прехло- [c.171]


Смотреть страницы где упоминается термин Кальций в мышцах: [c.237]    [c.279]    [c.498]    [c.373]    [c.416]    [c.589]    [c.215]    [c.176]    [c.437]    [c.762]   
Основы биохимии Т 1,2,3 (1985) -- [ c.423 , c.757 , c.758 ]

Биология Том3 Изд3 (2004) -- [ c.191 , c.387 , c.388 ]




ПОИСК





Смотрите так же термины и статьи:

Мышца



© 2025 chem21.info Реклама на сайте