Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиридин частичное восстановление

    Частичное восстановление четвертичных солей до соответствующих дигидросоединений возможно при использовании боргидридов, однако этот процесс гораздо менее изучен, чем для пиридина [61]. 1,4-Дигидропиразины можно получить при наличии либо силильных [62], либо амидных [63] заместителей при атомах азота. Все диазины также можно восстановить в соответствующие тетрагидропроизводные при наличии карбаматных защитных групп при атомах азота, что способствует стабильности и возможности вьщеления продуктов восстановления [64]. [c.269]


    Для обнаружения существования радикалов-семихинонов может быть использовано также полярографическое восстановление. Таким путем было показано, что свободные радикалы образуются при частичном восстановлении гетероциклических соединений ряда пиридина, хинолина и акридина , в том числе такого биохимически важного вещества, как никотинамид (гл. XII). [c.89]

    Алюмогидрид лития не оказывает действия на большинство ароматических и гетероциклических колец при восстановлении функциональных групп, связанных с ними непосредственно или через другие атомы. Некоторые производные пиридина (нитрилы, сложные эфиры, галогениды) [441, 1257, 1554] с функциями, которые могут быть восстановлены, в положении 3 или 5 (или в положениях 3 и 5), сложные эфиры 2- и 3-хинолинкарбоновых кислот [442, 863, 1566] и 6-хлорхинолин [1566] могут претерпеть частичное восстановление кольца с образованием 1,4- или [c.169]

    Восстановительное расщепление. Частично или полностью восстановленные производные пиридина теряют устойчивость цикла, присущую самому пиридину, и вследствие этого восстановление их в некоторых условиях приводит к разрыву шестичленного кольца. Конечно, и продукт восстановления самого пиридина—пиперидин может быть подвергнут специальным реакциям расщепления, например исчерпывающему метилированию или расщеплению его Ы-бензоильного производного по методу Брауна. Рассмотрение этих реакций пиридина отнесено в главу, посвященную соединениям пиперидина. Здесь же достаточно указать лишь те методы восстановления, которые, будучи применены к пиридину, прямо приводят к раскрытию цикла. Известно, например, что каталитическое гидрирование пиридина над никелевыми катализаторами, особенно при высокой температуре, дает н-амил-амин, н-пентан и аммиак [57]. При температуре около 140° в продуктах гидрирования начинает появляться н-амиламин, а свыше 200° главными побочными продуктами являются н-пентан и аммиак. Вероятно, они образуются при гидрогенолизе первоначального продукта восстановления-пиперидина. [c.328]

    Возможно, поверхностная составляющая в этих случаях частично обусловлена адсорбированными на электроде каталитически активными продуктами, образующимися в небольших количествах в результате электрохимического восстановления пиридина и его гомологов [401]. [c.231]

    Пиридин — органическое основание и хороший растворитель для многих нитросоединений, нерастворимых в воде и спирте, также оказывается пригодным как среда при восстановлении сероводородом или сернистым аммонием. Температура от О до 100°. Сероводород и его соли действуют здесь как частичные восстановители полинитросоединений. Иногда полезна прибавка пиперидина [c.294]


    Изопр ец. Изопрен, который при действии диоксан-сульфотри-оксида осмоляется даже при 0 удалось просульфировать пиридин-сульфотриоксидом в дихлорэтане при 100—110 Полученная бариевая соль непредельной моносульфокислоты содержит заметную примесь соли дисульфокислоты. Моносульфокислота дивинила является 2-метилбутадиен-1,3-сульфоновой-1 кислотой. Строение ее определялось частичным восстановлением над никелем с последующим окислением восстановленного продукта. При этом получается метилэтилкетон и отщепляется сульфогруппа в виде сульфат-иона  [c.271]

    Аналогичные продукты образуются при восстановлении тиофеца и пиррола Восстаиовленне ндет легче после замещения радикалом атома водорода в группе —КН— Из шестичленных гетероциклических соединений с одним атомом азота наиболее простой член ряда — пиридин присоединяет водород подобно бензолу, но прн его восстановлении остановить процесс в момент образования продуктов частичного восстановления легче, чем для бензола  [c.30]

    Один из способов получения пиридин-2-альдегида основан на хлорировании а-пиколина. Полученный 2-трихлорметилпиридин подвергают частичному восстановлению до 2-дихлорметилпиридина, который гидролизуют раствором азотнокислого серебра в альдегид [25]. Суммарный выход пиридин-2-аль-дегида составляет, однако, всего лишь 5%. Попытки прямого окисления а-пиколина до диацетата пиридин-2-альдегида действием хромового ангидрида в уксусном ангидриде оказались безуспешными [21]. [c.457]

    Бисульфит натрия или амальгама натрия также служат для частичного восстановления ряда пиридина [14] первый реагент был применен Каррером и Блюмером (стр. 438) для синтеза веществ, представляющих собой модели коэнзимов I и II. [c.484]

    Наилучшие результаты при гидрировании бензольного пли пиридинового ядра дают родий на угле (или оксиде алюминия) и оксид платины. Оба катализатора эффективны при низких температурах (50—80°С) и давлениях (2—3 атм). Восстановление на Р10г проводят в кислой среде [схема (7.59)], что является недостатком в случае гидрирования анилинов и пиридинов (например, возможно образование нерастворимых четвертичных аммониевых солей). Родиевые катализаторы на носителях склонны к ингибированию сильными азотсодержаш,ими донорами в этих случаях Р10г или Р(1 на носителе при высоких температурах (70—100°С) и давлениях (70—100 атм) менее подвержены отравлению и часто оказываются эффективными. Поскольку ароматическое кольцо медленно гидрируется в присутствии палладия в кислых средах, палладиевые катализаторы можно применять для частичного восстановления, однако при этом обычно необходимо высокое давление. [c.275]

    Частичное восстановление пиридинов происходит при наличии в положении 3 электроотрицательных групп, например ацил-, формил- или цианогрупп [80]. Влияние природы катализатора на реакцию восстановления показано на. примере 3-ацетилпиридина. Как правило, родиевые системы способствуют полному гидрированию субстрата, в то время как использование палладиевых катализаторов позволяет получать частично гидрированные соединения [схема (7.66)]. При применении палладия на угле в нейтральных или, кислых средах реакция прекращается после присоединения 2 моль водорода при этом с хорошим выходом получается 3-ацетил-1,4,5,6-тетрагидропи- [c.279]

    В присутствии смеси На и СО (соотношение 1 1) карбонил-гидрид кобальта, образующийся in- situ из октакарбонила или солей кобальта, катализирует гидрирование самых разнообразных субстратов. Некоторые ароматические соединения подвергаются частичному восстановлению, например антрацен гидрируется до 9,10-дигидроантрацена, пирен — до 4,5-дигидропи-рена, нафталин — до тетралина и т. д. Тиофен восстанавливается до. тиофана, индолы — до дигидроиндолов, а пиридин — до N-метилпиперидина. Могут быть также восстановлены и соединения с другими функциональными группами, например бензи-ловый спирт до толуола, кетоны до вторичных спиртов, арил-кетоны до углеводородов и альдегиды до спиртов (полный перечень соединений приведен в работе [3]). [c.72]

    Интересные данные получил Эберли [34], который прогревал аммонийную форму цеолита У при 427° С, адсорбировал на ней пиридин, а затем после вакуумирования образца в интервале температур 150— 260° С регистрировал спектры. В этих экспериментах адсорбция пиридина при давлении 0,1 мм рт. ст. привела к исчезновению из спектра полосы при 3650 см , а полоса при 3550 см осталась без изменения кислотность цеолита была обусловлена в основном бренстедовскими Центрами. При нагревании от 150 до 260° С интенсивность полосы поглощения при 1545 см в результате десорбции пиридина уменьщалась и наблюдалось частичное восстановление полосы поглощения валентных колебаний гидроксильных групп при 3650 см . Основываясь на этих данных, можно считать, Щ о-полоса при 3650 см принадлежит гидроксильным группам разных типов, отличающихся по силе. Значительную помощь в получении подробных данных о распределении кислотных центров по силе могло бы оказать изучение ИК-спектров при постепенной регулируемой десорбции из цеолита пиридина или другого основания. Исследование десорбции аммиака при термическом разложении -катионов исходной аммонийной формы цеолитов У не дали желаемого результата [c.301]


    Ениновые соединения присоединяют водород в присутствии катализаторов гидрирования. Ступенчатость этой реакции, достигаемая подбором катализаторов и условий ее проведения, дает возможность получать соответствующие диеновые или предельные соединения. Избирательное гидрирование тройной связи до двойной обычно проводят в присутствии катализатора Линдлара [745] (на СаСОз, ВаЗО , угле в пиридине [640а, 746] или хинолине [747])и других палладиевых [756, 975, 995, 996] и никелевых [995, 997] катализаторов селективного действия. Кроме того, с целью построения сопряженных диеновых систем из ениновых или диацетиленовых используются известные методы частичного восстановления тройной связи до двойной при помощи смешанных катализаторов и восстанавливающих агентов [368, 472, 749, 750, 995]. Гидрирование в присутствии перечисленных катализаторов практически прекращается после поглощения одного моля водорода на одну тройную связь исходного соединения. Ряд селективных катализаторов дает возможность проводить гидрирование этинилвиниловых соединений стереонаправленно. [c.288]

    Электрохимические методы гидрирования ненасыщенных С—С-связеп более чем общеизвестны. Так же, как прл восстановлении а -иснасыщенных нитросоедине-ний до насыщенных аминов [84], присоединение водорода часто сочетается с восстановлением других функциональных групп. Из гетероциклических соединений во многих случаях образуются частично или полностью насыщенные соединения. Например, из 8-оксихинолина с 95%-пым выходом получается 1,2,3,4-готрагидро-8-оксихипол1ш [85]. Электрохимическое восстановление применял Арене [86] еще в 1896 г. для синтеза пиперидина из пиридина .  [c.28]

    Каталитическое гидрирование позволяет получать такие соединения, как пиперидин из пиридина и пирролидин из пиррола. Частичное гидрирование приводит к образованию дигидро- и тетрагид-росоединений, однако трудно дать общие рекомендации относительно лучпшх реагентов или условий проведения таких реакций восстановления. Эта тема настолько обширна, что здесь будут сделаны только некоторые замечания и приведены лишь некоторые ссылки [133—135]. [c.488]

    Методом ЭПР изучено взаимодействие различных адсорбатов с ионами в цеолите NaX с частичным обменом Na" на Си +. В процессе дегидратации ионы медп мигрируют в места Si и Sb внутри -полостей. При адсорбции наблюдается сильное взаимодействие молекул аммиака и пиридина (в последнем случае при 473 К) с ионами меди, находящимися в местах S n- Поскольку молекулы пиридина слишком велики, чтобы проникать в -полости, ионы меди смещаются в большие полости. Нагревание цеолита СиХ с окисью углерода при 623 К приводит к восстановлению Си + до Си+. При адсорбции СО после повторного окисления образуется карбонильный колшлекс Си + [114, 115]. [c.676]

    Тетрагидроизохинолины. При гидрировании изохинолина водород присоединяется сначала к пиридиновому кольцу следовательно, 5,6,7,8-тетрагидроизо-хинолины не могут быть получены прямым восстановлением. Однако незамещенный 5,6,7,8-тетрагидроизохинолин был получен гидрированием изохинолина до декагидроизохинолина и частичным дегидрированием последнего. Реакция дегидрирования осуществляется нагреванием декагидроизохинолина с палладием или с селеном в растворе тетралина [151 ]. 5,6,7,8-Тетрагидроизохинолины были синтезированы из производных циклогексана с использованием методов, применяемых для получения соединений ряда пиридина (стр. 287). [c.291]

    В то же время главное алифатическое свойство, а именно легкость реакции замещения с нуклеофильными реагентами, например гиДроксильным ионом, аммиаком и аминами, может быть результатом переходного резонансного состоя-ния структур типа ХИ1, которое возникает вследствие понижения энергии активации. Реакция хлористого пикрила с такими слабыми нуклеофильными реагентами, как вода, является совершенно аналогичной [116]. Применение кислотного катализа при аминолизе хлорпиримидинов доводит этот эффект до максимума, способствуя образованию структуры XIV [117]. Было установлено, что аминолиз 4-хлорпиримидина контролируется также степенью нуклеофильности реагирующего амина [118]. Так, 2-амино-4-хлор-6-метилпиримидин легко взаимодействует с анилином в соляной кислоте и только едва реагирует с более нуклеофильными реагентами—пиперидином и диэтиламином. Однако в буферных растворах при pH 10 реакция проходит легко и с двумя последними соединениями. Об алифатическом характере указанных галогенопроизводных свидетельствует также и проводимая по Фриделю—Крафтсу реакция 4-хлор-5-этоксиметил-2-метилпиримидина с бензолом, не имеющая места в менее активированном ряду пиридина [119]. Кроме того, эти соединения часто легко восстанавливаются цинковой пылью и другими мягкими восстановителями. Хотя описано много примеров частичного нуклеофильного обмена или восстановления полигалогенопиримидинов, относительная реакционная способность положений 2 и 4 (или 6) экспериментально точно не установлена по-видимому, в обоих случаях она должна быть приблизительно равной. Соотношение получаемых соединений в большей степени зависит от легкости их выделения. [c.208]

    Сультоны вступают в реакции, аналогичные реакциям ациклических сульфоновых эфиров. Изучен механизм их гидролиза [77, 97, 98]. Реакция сультонов с анилинами и аминами происходит по атому углерода (уравнение 58) [99]. Сультон камфена (62) частично восстанавливается алюмогидридом лития с образованием (63) и (64), который легко дегидратируется [100]. При обработке (62) бутнллитием, а зате) 1-бром-3-метилбутеном-2 образуется (65). При восстановлении этого сультона гидридом алюминия и последующей дегидратации хлороксидом фосфора в пиридине образуется (66) [101]. [c.528]

    Р1зучены условия полимеризации пиридина при катодной поляризации капельного и стационарного ртутных электродов в водных растворах серной кислоты [13]. Происходит восстановление катионов пиридина (РуН+), образуются радикалы РуН, инициирующие полимеризацию. На основании ИК-спектра и элементарного анализа предложено частичное гидрирование пиридина с последующим раскрытием цикла и образованием полимера с сопряженными связями. [c.187]


Смотреть страницы где упоминается термин Пиридин частичное восстановление: [c.515]    [c.166]    [c.178]    [c.232]    [c.475]    [c.390]    [c.330]    [c.475]    [c.236]    [c.317]    [c.356]    [c.291]    [c.208]    [c.639]    [c.139]    [c.637]    [c.161]    [c.470]    [c.637]    [c.460]    [c.55]    [c.440]   
Алюмогидрид лития и его применение в органической химии (1957) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление пиридина



© 2024 chem21.info Реклама на сайте