Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ под действием альдегида

    Опыт № 1 представлял простое гидрирование. В опыте № 2 парциальное давление окиси углерода было достаточным для превращения металлического кобальта в растворимый карбонил и гидрирование протекало, несмотря на общеизвестное отравляющее действие окиси углерода при гетерогенном катализе. В опыте № 3 парциальное давление окиси углерода было слишком низким для образования карбонила и восстановление альдегида не протекало. В опыте №4 парциальное давление окиси углерода было равно практически нулю, тетракарбонил кобальта разлагался и гидрирование не протекало. [c.263]


    Одним из практически важных достижений гетерогенного катализа является каталитическое гидрирование окиси углерода с получением углеводородов — парафинов и олефинов, а также метанола и высших спиртов. Совместным действием окиси углерода и водорода на олефины получают альдегиды. [c.227]

    Либих был совсем близок к выяснению механизма этой каталитической реакции, а также механизма действия ферментов, так как он впервые наблюдал образование промежуточного вещества в органическом катализе Отфильтрованная от оксамида жидкость вела себя при перегонке так, как будто бы альдегид и оксамид находились в соединении друг с другом, которое разлагалось при кипячении [5]. Между тем он рассматривает эту реакцию, напротив, как подтверждение его известной теории ферментов Очевидно, что альдегид, часть которого превращается в вещество, подобное акролеину, оказывает во время этих переходов действие, которое состоит в том, что элементы циана по-новому группируются с элементами воды [6]. [c.160]

    За последние 10 лет было опубликовано большое число исследований, посвященных катализу металлами переменной валентности в реакциях жидкофазного окисления. Полученный экспериментальный материал позволяет в общих чертах составить представление о механизме действия солевых катализаторов ири окислении альдегидов и углеводородов. [c.204]

    В условиях кислотного катализа низшие альдегиды присоединяются друг к другу, давая циклические ацетали, чаще всего тримеры [575]. Циклический тример формальдегида называется триоксан, а ацетальдегида—паральдегид. В определенных условиях удается получить тетрамеры [576] или димеры. Полимеризация альдегидов может давать и линейные молекулы, по при этом необходимо присутствие небольших количеств воды для образования полуацетальных групп на концах цепи. Линейный полимер, полученный из формальдегида, называется пара-формальдегидом. Так как тримеры и полимеры альдегидов представляют собой ацетали, они устойчивы к щелочам, но гидролизуются под действием кислот. Поскольку формальдегид и ацетальдегид имеют низкие температуры кипения, часто удобно использовать их в виде тримеров и полимеров. [c.418]

    Можно утверждать, что без катализа вообще была бы невозможна жизнь. Достаточно сказать, что лежащий в основе жизнедеятельности процесс ассимиляции двуокиси углерода хлорофиллом растений является фотохимическим и каталитическим процессом. Простейшие органические вещества, полученные в результате ассимиляции, претерпевают затем ряд сложных превращений. В химические функции живых клеток входит разложение и синтез белка, жиров, углеводов, синтез различных, часто весьма сложных молекул. Таким образом, клетка является своеобразной и весьма совершенной химической лабораторией, а если учесть, что все эти процессы каталитические — лабораторией каталитической. Катализаторами биологических процессов являются особые вещества —ферменты. Если сравнивать известные нам неорганические катализаторы с ферментами, то прежде всего поражает колоссальная каталитическая активность последних. Так, 1 моль фермента алкогольдегидрогеназа в 1 сек при комнатной температуре превращает 720 моль спирта в уксусный альдегид, в то время как промышленные катализаторы того же процесса (в частности, мeдь)J при 200° С в 1 сек превращают не больше 0,1 — 1 моль на один грамм-атом катализатора. Или, например, 1 моль фермента каталазы при 0°С разлагает в одну секунду 200 000 моль перекиси водорода. Наиболее же активные неорганические катализаторы (платиновая чернь) при 20° С разлагают 10—80 моль перекиси в 1 сек на одном грамм-атоме катализатора. Приведенные примеры показывают, что природные биологические катализаторы во много раз превосходят по активности синтетические неорганические катализаторы. Высокая специфичность и направленность действия, а также способность перерабатывать огромное количество молекул субстрата за короткое время при температуре существования живого организма и позволяет ферментам в достаточном количестве давать необходимые для жизнедеятельности соединения или уничтожать накапливающиеся в процессе жизнедеятельности бесполезные, а иногда и вредные продукты. [c.274]


    Альдольные конденсации под действием гидроксида натрия ускоряются в условиях межфазного катализа. Например, масляный альдегид в присутствии аликвата 336 дает (после дегидратации) 2-этилгексен-2-аль с выходом 90%, а в отсутствие межфазного катализатора выход продукта составляет лишь 14% [1714]. В присутствии ТЭБА порядок реакции конденсации ацетона меняется со второго на третий (относительно ацетона), и в результате образуется диацетоновый спирт, который далее превращается в окись мезитила и форон [1547].  [c.228]

    Окисление широко используется для получения карбоновых кислот, альдегидов, кетонов, а-оксидов, хинонов, N-оксидов третичных аминов и ряда других классов органических соединений. Имеется большой набор окислителей, различающихся по окислительному потенциалу, специфичности действия. В качестве окислителей широко используются кислород, перманганат калия, хромовый ангидрид, хромовая смесь, азотная кислота, диоксид свинца, тетраацетат свинца, диоксид селена, пероксид водорода, надкисло-ты, хлорид железа (П1). Окисление кислородом рассмотрено в разделах Радикальное замещение и Гомогенный и гетерогенный катализ . [c.199]

    Попытка обобщить данный материал сделана в настоящей книге, которая представляет собой логическое продолжение первой части, опубликованной ранее отдельным томом и посвященной анализу специфичности и кинетических аспектов действия ферментов на относительно простые субстраты, такие как алифатические и ароматические спирты и альдегиды, производные карбоновых кислот, замещенные аминокислоты и их производные (не выше ди- или три-пептидов). Главное внимание в первой части книги уделялось характеру фермент-субстрат ных взаимодействий на достаточно ограниченных участках активного центра и кинетическим проявлениям этих взаимодействий. В основе первой части книги лежит экспериментальный материал, полученный при изучении специфичности, кинетики и механизмов действия цинк- и кобальткарбоксипеп-тидазы, химотрипсина и трипсина из поджелудочной железы быка, алкогольде-гидрогепаз нз печени человека и лошади и пенициллинамидазы бактериального происхождения. Итогом первой части книги явились обобщение и формулировка кинетико-термодинамических принципов субстратной специфичности ферментативного катализа. [c.4]

    Арил-, бензил-, винил- и аллилгалогениды превращаются в альдегиды при действии СО и BuaSnH в присутствии палладиевого (0) катализатора [1286а]. Различные функциональные группы не мешают проведению этой реакции. Симметричные кетоны можно синтезировать обработкой первичного алкил- или бензилгалогенида пентакарбонилом железа в условиях меж-фазного катализа [1287]. Согласно другому методу, алкиларил-кетоны с хорошими выходами получают при обработке смеси арилиодида, алкилиодида и пары Zn—Си моноксидом углерода в присутствии катализатора на основе палладия(0) (Arl-fRI-j-+ O- R OAr) [1288]. [c.225]

    Действие сильных окислителей [43]. Вторичные спирты легко окисляются в кетоны бихроматом в кислой среде [44] при комнатной температуре или небольшом нагревании. Это наиболее распространенный реагент, хотя применяют также другие окислители (например, КМп04, Вгг, МпОг, тетроксид рутения [45] и т. п.). Раствор хромовой и серной кислот в воде известен под названием реактива Джонса [46]. Титрование реактивом Джонса ацетонового раствора вторичных спиртов [47] приводит к быстрому их окислению до кетонов с высоким выходом, причем при этом не затрагиваются двойные и тройные связи, которые могут присутствовать в молекуле субстрата (см. реакцию 19-10), и не происходит эпимеризации соседнего хирального центра [48]. Реактив Джонса окисляет также первичные аллильные спирты до соответствующих альдегидов [49]. Широко применяются также три других реактива на основе Сг(У1) [50] дипиридинхром (VI)оксид (реактив Коллинса) [51], хлорохромат пиридиния (реактив Кори) [52] и дихромат пиридиния [53]. МпОг также отличается довольно специфическим действием на ОН-группы и часто используется для окисления аллильных спиртов в а,р-ненасыщенные альдегиды и кетоны. Для соединений, чувствительных к действию кислот, применяют СгОз в ГМФТА [54] или комплекс СгОз — пиридин [55]. Гипохлорит натрия в уксусной кислоте полезен для окисления значительных количеств вторичных спиртов [56]. Используют и окислители, нанесенные на полимеры [57]. Для этой цели применялись как хромовая кислота [58], так и перманганат [59] (см. т. 2, реакцию 10-56). Окисление перманганатом [60] и хромовой кислотой [61] проводят также в условиях межфазного катализа. Межфазный катализ особенно эффективен в этих реакциях, поскольку окислители нерастворимы в большинстве органических растворителей, а субстраты обычно нерастворимы в воде (см. т. 2, разд. 10.15). При проведении окисления действием КМп04 использовался ультразвук [62]. [c.270]


    Гликоли легко расщепляются в мягких условиях и с хорошими выходами при действии йодной кислоты или тетраацетата свинца [126]. Продуктами реакции могут быть 2 моля альдегидов, или 2 моля кетонов, или по одному молю каждого из этих соединений в зависимости от того, какие группы соединены с двумя рассматриваемыми атомами углерода. Выходы настолько высоки, что олефины часто превращают в гликоли (т. 3, реакция 15-36) и затем расщепляют действием HIO4 или РЬ(0Ас)4 вместо того, чтобы проводить прямое расщепление озоном (реакция 19-9), или бихроматом, или перманганатом (реакция 19-10). Ряд других окислителей приводит к тем же продуктам. Среди них активированный диоксид марганца [127], соли таллия (П1) [128], хлорохромат пиридиния [129], а также О2 при катализе солями Со(И1) [130]. Перманганат, бихромат, N-иодосукцинимид [131], N-бромосукцинимид — трифенилвис-мут [132], триацетат иода [133] и некоторые другие окислители также расщепляют гликоли, давая карбоновые кислоты, а не альдегиды, однако эти реагенты редко используются в синтетических целях. [c.276]

    Реакция Кори. Как известно, ароматические альдегиды и кетоны реагируют с сульфилидами, образуя оксираны. Обычно эта реакция требует безводных условий. Распространение на иее метода межфазного катализа явилось большим успехом. Показано, что в обычных условиях межфазного катализа (15 н. МаОН — бензол, комнатная температура, перемешивание) при действии додецилдиметилсульфонийиодида (который одновременно служит катализатором межфазного переноса) на бензальдегид образуется фенилоксиран с выходом 817о [367]  [c.130]

    Внутримолекулярный общий кислотный катализ удобно проиллюстрировать на примере гидролиза ацеталей (II), образованных из салициловой кислоты и альдегидов, в качестве которых могут выступать простые соединения типа формальдегида и бензальдегида или альдегидные формы углеводов. Реакции последних (12) представляют особый интерес в связи с изучением механизма действия ферментов, гидролизующих гликозиды [24, 32] (см. разд. 24.1.4.4). [c.468]

    Явления отрицательного катализа при окислении в высшей степени интересны и в приложении к интересующим нас проблемам. Ими объясняются в известной мере применения многих органических соединений типа замешенных аминов для предохранения от старения резиновых изделий. Такие противостарители производятся красочной промышленностью из ее промежуточных продуктов. Сохранение без изменений альдегидов, даже таких малоустойчивых, как фурфурол, удается теперь без затруднений посредством введения в него подходящего антиоксиданта. Вероятно возможно найти подходящие антиокислители для сохранения фенолов от изменений на воздухе, также как и для аминов. Обработка анилина железом, покрытым слоем сернистого железа, испытана как средство против изменений анилина от потемнения при хранении [П. К. Булич ]- Не имеет ли здесь место также действие антиокислителя в виде следов сернистого железа Наконец возможно теоретически найти надлежащие антиоксиданты для красителей, особенно легко изменяющихся при окислении, и тем самым сделать прочными окраски красителями, которые сами по себе непрочны. Практически давно известно, что на разных волокнистых материалах, соотв. субстратах, и при разных подготовках (протравах) одни и те же красители дают окраски разной степени прочности. [c.476]

    При рассмотрении альдольно-кротоновых конденсаций альдегидов и кетонов подчеркивалось, что енолы могут проявлять нуклеофильные свойства и что их содержание в реакционной смеси может быть увеличено под действием агентов кислого или основного характера (кислотный и основной катализ). Сказанное справедливо и для ацетоуксусного эфира. В качестве примеров можно привести нитрозирование и конденсации с альдегидами. Нитрозирование проводят добавляя нитрит натрия в раствор ацетоуксусного эфира в уксусной кислоте  [c.477]

    В кислых условиях конденсация протекает только по метиленовой группе цикла, приводя к (З-трикетонам 2 (75-80%), а при использовании основных катализаторов (пиперидин, триэтиламин) - как по метиленовой группе, так и по метильной группе боковой цепи, давая продукты 3. Сочетание двух видов катализа позволило нам провести модификацию молекулы 3-ацетилтиотетроновой кислоты 1 различными ароматическими альдегидами и получить ряд Р-трикетонов 3, которые были далее восстановлены на палладиевом катализаторе до алкиларильных трикетонов 4. Метилирование трикетонов 4 (схема 2) действием эфирного раствора диазо- [c.135]

    Арилалкилкетоны легко конденсируются с ароматическими альдегидами в условиях основного и кислотного катализа. Так могут быть получены а, -непредельные кетоны (халконы) самого различного строения. При основном катализе используют разбавленные водно-спиртовые растворы щелочей, а при кислотном — действуют смесью серной и уксусной кислот или сначала пропускают в реакционную смесь сухой хлороводород, а затем осуществляют дегидрохлорирование действием щелочи или нагреванием  [c.174]

    Христиансен [90] применил теорию цепных реакций для объяснения действия водорода при разложении щавелевой кислоты с помощью серной кислоты, а также при автоокислении альдегидов окисляющими веществами или при замедляющем действии хлора при детонации гремучего газа. Христиансен и Гуффман [92] исследовали реакцию между метанолом и водяным паром в качестве примера гетерогенного катализа. Кинетическое исследование реакции [c.180]

    Трудным вопросом является выяснение роли агента-катализатора, вызывающего таутомерное или изомерное превращение. Пути прохожде ния химических реакций обыкновенно объясняются образованием нестойких промежуточных веществ или рассматриваются как внутримолекулярный процесс, причем не всегда должное внимание уделяется роли реагента-катализатора и физических условий. Можно думать, что каталитические реакции в условиях гомогенного катализа совершаются при участии комплексных и молекулярных соединений (оксониевых и др.) в результате активации молекул, придающей подвижность отдельным атомам и группам в активированной молекуле. Каталитическое действие кислот зависит как от водородного иона кислоты, протона, присутствующего в реакциях преимущественно в гидратированном виде (Н3О — ок-сониевый, гидрониевый, гидроксониевый ион), так и от самой молекулы кислоты. Можно предположить, что при изомеризации а-окисей и при дегидратации а-гликолей способ действия разведенных и концентрированных кислот отчасти различен. Разведенные и концентрированные кислоты нередко дают неодинаковые продукты реакции, что было отмечено Даниловым в его работах по дегидратации а-гликолей и им же и Венус-Данило-вой на примере изомеризации а-окисей, превращающихся при невысоких концентрациях кислоты в альдегиды, а при высококонцентрированных кислотах — в кетоны . [c.313]

    Каталитическое действие (главновалентный катализ) несколько перекрывается действием растворителя, которое присуще альдегидам при расщеплении алкоксиалкилхлоридов. [c.34]

    Особую группу реакций, близко примыкающих к процессам альдольной конденсации, составляют некоторые окислительновосстановительные превращения альдегидов. Каталитическое действие сильных щелочей обычно приводит к альдольной конденсации, но если последняя невозможна из-за особенностей строения альдегида, то протекает реакция Канниццаро, при которой одна молекула альдегида окисляется в карбоновую кислоту, а другая восстанавливается в спирт. Это в еще большей степени относится к катализу слабыми основаниями (алкоголяты кальция, магния и особенно алюминия), меньше катализирующими альдольную конденсацию, но зато вызывающими окислительно-восстановительные процессы. При этом в безводной среде образуется сложный эфир (реакция Тищенко), а в водной— спирт и соль кислоты  [c.559]

    Эти наблюдения, а таклсе тот факт, что перекиси циклогексанона, флуоренона и алифатических альдегидов при нагревании пли при обработке кислотами превращаются в те же продукты, которые, получаются и в результате реакции Байера — Виллигера, свидетельствуют о том, что перекись водорода в эфире или в разбавленной кислоте действует менее эффективно, поскольку она не благоприятствует стадиям диссоциации и перегруппировки, необходимым д.ля протекания реакции Байера — Виллигера (стр. 83), В аналогичной перегруппировке сложных эфиров гидроперекиси, образующейся из декагидро-иафталина (ХБУ ) [2], на стадию диссоциации оказывают влияние катализ, происходящий под действием ионов водорода, а также природа ацильной группы КСО. [c.96]

    Галогенид-ионы также могут действовать как нуклеофилы по отношению к альдегидам в условиях кислотного катализа, но образующееся при этом, например, 1-гидрокси-1-хлорпроиз-водное (35) очень неустойчиво равновесие этой реакции сильно смещено в сторону исходных веществ. При применении раствора НС1 в спирте ROH могут быть получены 1-алкокси-1-хлорсоеди-нения например, из СН2О и МеОН получен 1-метокси-1-хлор-метан (а-хлордиметиловый эфир) (36) (ср. образование ацеталя разд. 8.2.1) необходимым условием является нейтрализация реакционной смеси до выделения продукта реакции  [c.237]


Смотреть страницы где упоминается термин Катализ под действием альдегида: [c.575]    [c.181]    [c.89]    [c.327]    [c.327]    [c.103]    [c.160]    [c.96]    [c.593]    [c.120]    [c.700]    [c.22]    [c.89]    [c.71]    [c.71]    [c.394]    [c.59]    [c.199]    [c.56]    [c.241]    [c.186]    [c.552]    [c.10]    [c.204]    [c.447]   
Биоорганическая химия ферментативного катализа (1987) -- [ c.182 ]




ПОИСК







© 2025 chem21.info Реклама на сайте