Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каменноугольная фракции

    Пиридиновые основания хорошо растворяются в воде, смоле и в сыром бензоле При охлаждении коксового газа они растворяются в надсмольной воде и в смоле, но большая часть их остается в коксовом газе Распределение пиридиновых оснований между газом, надсмольной водой и смолой зависит от температуры газа после первичных холодильников и их конструкции Чем лучше первичное охлаждение газа, тем выше содержание пиридиновых оснований в конденсате холодильников и меньше в газе В надсмольной аммиачной воде растворяется до 15—25 % легких пиридиновых оснований от их ресурсов в газе Тяжелые пиридиновые основания растворяются в каменноугольной смоле, а затем выделяются серной кислотой из каменноугольных фракций и масел Пиридиновые основания можно обнаружить на всех технологических участках цеха улавливания, в том числе и в воде конечных холодильников, в поглотительном масле, в сыром бензоле, в сепараторной воде бензольного отделения, так как обладают повышенной летучестью и хорошей растворимостью в воде и дру- чх жидкостях [c.241]


    Какие реактивы и какой концентрации применяются для извлечения 0з каменноугольных фракций пиридиновых оснований и феноло-крезолов  [c.330]

Таблица 30. Поведение смесей пекового дистиллята с нефтяными и каменноугольными фракциями при изменении температуры Таблица 30. Поведение смесей пекового дистиллята с нефтяными и каменноугольными фракциями при изменении температуры
    Коксовый газ, очищенный от аммиака, направляют на улавливание сырого бензола. Наиболее распространенным методом улавливания является абсорбция сырого бензола поглотительными маслами при 20—25 °С в скрубберах 9. В качестве поглотителей применяют каменноугольное (фракция каменноугольной смолы, кипящая при 230—300°С) или соляровое масло (фракция, кипящая при 300—350 °С). Газ, поступающий в бензольные скрубберы, предварительно охлаждается водой в холодильниках 8 непосредственного смешения. При этом из газа вымываются нафталин и мельчайшие брызги серной кислоты, увлеченные из сатуратора. Освобожденный от сырого бензола коксовый газ (обратный коксовый газ) в большинстве случаев очищается от сероводорода и [c.223]

    Наряду с разработкой дугового метода синтеза ацетилена из метана в течение многих лет в различных странах производились изыскания по приложению дугового метода для крекинга жидких углеводородов. При этом имелось в виду использовать главным образом различные малоценные нефтяные и каменноугольные фракции и остатки, как мазут, гудрон, антраценовые масла и т. д. [c.103]

    Однако гораздо больше его в другой фракции того же угля. После того как уголь нагрет и из него выделился коксовый газ, в угле еще остается немного органического вещества. Если еще сильнее нагреть уголь, выделяется и оно если его собрать, получится густая черная жидкость, которая называется каменноугольной смолой. Тонна угля может дать около 60 фунтов каменноугольной смолы. [c.62]

    Ароматические углеводороды прежде получали исключительно из каменноугольной смолы. Ун<е во время первой мировой войны были проведены опыты получения толуола из нефтяных фракций. Для этой цели был применен пиролиз при 700—750° процесс, ужо рассмотренный нами коротко (см. стр. 57). [c.101]

    Однако высокомолекулярные алифатические углеводороды не удается получать из нефти с той степенью чистоты и однородности, которые требуются для дальнейшей химической переработки. Из каменноугольной смолы фракционированной перегонкой иногда с последующей кристаллизацией легко можно получать индивидуальные соединения. Применение аналогичных методов при переработке нефти вследствие большей сложности ее состава не позволяет достигнуть этой цели. Выделение фракций с широкими пределами кипения, содержащих углеводороды с 10—20 углеродными атомами в молекуле, также непригодно для получения сырья, предназначаемого для последующей химической переработки. Наиболее пригодные для переработки углеводороды нормального строения в подобных широких фракциях представляют собой смеси с парафиновыми углеводородами изостроения (с различной сте- [c.8]


    При перегонке жидкой фракции — каменноугольной смолы — пз легкого масла (до 160 °С) отгоняется бензол (2% массы всей смолы), нз среднего масла (160— 230 С) —до 12% гомологов бензола (толуол, ксилолы). Какая масса бензола и его гомологов будет получена, если переработано каменноугольной смолы массой 38 т  [c.246]

    В Прикаспийской впадине свойства и состав нефтей в подсолевых отложениях практически не зависят от современных условий залегания. Так, для нефтей, залегающих в девонских (в обрамлении) и в каменноугольных отложениях, не было получено значимых коэффициентов корреляции с условиями залегания. В нефтях мезозойских отложений как по отдельным комплексам, так и по мезозою в целом установлены связи между их составом и геологическими условиями. Так, например, состав и свойства нефтей, залегающих в юрских отложениях, с высокими значениями коэффициентов коррелируются с глубиной и минерализацией вод (плотность нефти, содержание бензина, парафино-нафтеновой фракции, бензольных смол и т. д.). [c.148]

    Благодаря высокому содержанию ароматических углеводородов лигроины, полученные при гидрокрекинге нафтеновых фракций, применяются как растворители осадков и лаков. Такому использованию лигроинов гидрокрекинга способствует обнаруженная у них тенденция с повышением температуры кипения фракций увеличивать содержание ароматических углеводородов. Этот вывод вытекает из характера изменения свойств, продемонстрированных в табл. П-7 [215. Такие лигроины очень похожи на растворители, полученные из каменноугольного дегтя. [c.96]

    Из полученных данных следует, что среди фенолов каменноугольного происхождения имеются эффективные антиокислители, значительно превосходящие древесносмольный антиокислитель. Так, отдельные фракции двухатомных фенолов, выделенные как из смол полукоксования, так и из подсмольных вод, оказались более чем в 2 раза эффективнее древесносмольного антиокислителя при оценке по длительности индукционного периода и почти в 5 раз эффективнее при оценке по торможению смолообразования в бензине (см. табл. 70). Высокие антиокислительные свойства показали суммарные фенолы из подсмольных вод и фракция фенолов 240—330° С из смолы полукоксования черемховских углей. Фенолы, выделенные из керосиновой фракции смолы полукоксования, практически равноценны по эффективности древесносмольному антиокислителю, а фенолы из бензино-лигроиновой фракции менее эффективны, чем древесносмольный антиокислитель. Следует отметить, что фенолы из продуктов полукоксования углей особенно эффективны при торможении смолообразования, когда бензины окисляются в присутствии металлов (см. табл. 70). [c.236]

    Физико-химическая характеристика нефтей Куйбышевской области весьма различна—как на разных месторождениях, так и на одном и том же месторождении, но на разных горизонтах. Основное количество нефти в области добывается из залежей каменноугольного возраста. Это сернистые, смолистые и парафиновые нефти содержание светлых нефтепродуктов 15—28% (фракции до 200 °С) и 35—54% (фракции до 350 °С), [c.14]

    При термическом воздействии на молекулу, когда энергия равномерно распределяется по всем связям, наиболее устойчивой является связь С—О, а остальные обладают примерно одинаковой прочностью. Поэтому нагревание нефтяных или каменноугольных жидких фракций не приведет к удалению из них кислорода, азота, серы, но делает возможным перераспределение гетероатомов между молекулами при разрыве С—С-связей. [c.311]

    Угольные перегородки. Пористые угольные перегородки получают смешением определенной фракции измельченного кокса с антраценовой фракцией каменноугольной смолы и последующим формованием образующейся смеси под давлением, сушкой формованных изделий и нагреванием их в восстановительном пламени. Эти перегородки отличаются механической прочностью и устойчивостью к действию кислот и щелочей. [c.373]

    После отгонки от нефтяной смолы легкого и среднего масла остается густая, почти черная смола, из которой в вакууме или перегонкой с водяным паром, в крайнем случае перегонкой на толом огне (в последнем случае со значительным разложением), выделяется тя-ягелое масло. Оно ггредставляет собой довольно вязкую (до 6° Э при 50°) оранжевую или светлокоричневую жидкость и содержит главным образом нефтяные углеводороды антрацен, фенантрен, отчасти хриаен и др. Часто эта фракция нефтяной смолы содержит, и неразложенный парафин. Отличие от соответствующей каменноугольной фракции главным образом заключается в низком содержании ароматических углеводородов. [c.425]

    Коксовый газ, очищенный от аммиака, направляется на улавливание сырого бензола. Наиболее распространенным методом улавливания сырого бензола является абсорбция его поглотительными маслами при 20—25°С в скрубберах. В качестве поглотителей применяется каменноугольное (фракция перегонки ка.менноугольной смолы, кипящая при 230—ЗОО С) или соляровое масло (фракция, кипящая при 300—350°С). Газ, поступающий в бензольные скрубберы, предварительно охлаждается водой в холодильниках непосредственного смешения. При этом из газа вымываются нафталин и мельчайшие брызги серной кислоты, увлеченные из сатуратора. Освобожденный от сырого бензола коксовый газ, так называемый обратный коксовый газ, в большинстве случаев очищается от сероводорода и других серосодержащих соединений и поступает потребителю. Раствор сырого бензола в поглотительном масле направляют в дистилляционную колонну, где из него отгоняется сырой бензол, а масло после охлаждения возвращается на орошение бензольных скрубберов. [c.45]


    Легкая каменноугольная фракция (масло) полимеризуется при строгом регулировании режима температуры, содержания мономера и количества катализатора. При использовании серной кислоты экзотермическая реакция протекает почти мгновенно. После завершения реакции дают отстояться кислым гудронам и нейтрализуют катализатор водным раствором щелочи. Затем из раствора полимера отгоняют летучие компоненты путем перегонки с паром. Эту перегонку можно продолжать до получения полимера с желательной температурой размягчения. Применяют также непрерывную полимеризацию кумарона и индена в сольвентнафте с применением эфирата трехфтористого бора. Молекулярная масса даже наиболее высокоплавких технических кумароно-инденовых полимеров невысокая — порядка 500—3000. Кадиевский коксохимический завод изготовляет кумароно-инденовые полимеры полимеризацией в присутствии безводного хлористого алюминия. В этом случае выход полимеров больше, они светлее, водоустойчивее, почти не содержат минеральных примесей и обладают высокой температурой размягчения. [c.138]

    Для отсоса газа из печей и транспортирования его через аппаратуру устанавливается эксгаустер (турбогазодувка). Аммиак, остающийся в газе после холодильников,.улавливается в сатураторе башенной серной кислотой, которая взаимодействует с аммиаком, давая кристаллы сульфата аммония. Вместе с аммиаком в сатураторе улавливаются пиридиновые основания с образованием сульфата пиридина. Сатуратор — аппарат барботажного типа. За счет предварительного нагрева коксового газа паром в трубчатом подогревателе и тепла реакции температура в сатураторе поддерживается на уровне 60° С. Кристаллы (N 14)2804 вместе с маточником выводятся из сатуратора, отделяются от него на центрифугах (на рис. 64 не показано) и используются как азотное удобрение. Коксовый газ, очищенный от аммиака, направляется на улавливание сырого бензола. Наиболее распространенным методом улавливания сырого бензола является абсорбция его поглотительными маслами при 20—25° С в скрубберах. В качестве поглотителей применяется каменноугольное (фракция перегонки каменноугольной смолы, кипящая при 230—300° С) или соляровое масло (фракция, кипящая при 300—350° С). Газ, поступающий в бензольные скрубберы, предварительно охлаждается водой в холодильниках непосредственного смешения. При этом из газа вымываются нафталин и мельчайшие брызги серной кислоты, увлеченные из сатуратора. Освобожденный от сырого бензола коксовый газ, так называемый обратный коксовый газ, в большинстве случаев очищается от сероводорода и других серусодержащих соединений и поступает потребителю. Раствор сырого бензола в поглотительном масле направляют в дистилля-ционную колонну, где из него отгоняется сырой бензол, а масло после охлаждения возвращается на орошение бензольных скруббе/ ров. [c.157]

    Важнейшим из этих направлений является получение ацетилена. До сих пор основным сырьем для его синтеза служили природные газы и газовые отходы некоторых производств, содержащие высокий процент СН и Hg. В небольшом масштабе ацетилен получался также электропиролизом в жидкой фазе малоценных нефтяных и каменноугольных фракций. [c.102]

    В качестве сырья используют смеси жидких продуктов нефтяного (60—70 % об.) и каменноугольного (30—40 % об.) происхождения. Из продуктов нефтепереработки наиболее широко применяют термогазойль, зеленое масло, экстракты газойлей каталитического крекинга, а из продуктов коксохимии — антраценовое масло, хризеновую фракцию и пековый дистиллят. Сырье представляет собой углеводородные фракции, выкипающие при температуре выше 200 °С и содержащие значительное количество ароматических углеводородов (60— 90 % масс.). Применяемое сырье в соответствии с требованиями стандартов контролируется по следующим показателям плотность, индекс корреляции, показатель преломления, вязкость, содержание серы, влаги и механических примесей, коксуемость. [c.108]

    В нефтях II ("каменноугольного") генотипа также преобладают СН2-группы в длинных цепях (24—43 %, среднее 35 %), но в меньшей мере, чем в девонском генотипе. Нефти II генотипа также легкие, с высоким содержанием бензиновых фракций. Смолисто-асфальтеновых компонентов больше, чем в девонском генотипе. В бензиновых фракциях преобладают нафтеновые УВ. В отбензиненной части нефти степень циклизации их выше по сравнению с нефтями девонского генотипа. Структура парафиновых цепей несколько отличается от таковой в нефтях "девонского" генотипа — отмечается снижение роли СН2-групп относительно СНз-групп и возрастание степени разветвленности, больше СНз-групп в гемдиме-тильном положении. Значительно возрастает процент нафтеновых циклов в усредненной молекуле парафино-нафтеновых УВ (с 17 % в девонских нефтях до 29 % в каменноугольных). Среди аренов полициклических УВ не обнаружено. Состав малоциклических ароматических УВ несколько отличается от состава аренов девонских нефтей преобладанием нафталиновых ядер над фенантреновыми, более высоким содержанием бензольных ядер. Характерная особенность нефтей II генотипа - наиболее высокое суммарное содержание ароматических ядер (около 39 %). [c.70]

    В нефтях III ("пермского") генотипа резко преобладают Hj-группы в длинных цепях (от 25 до 43 %). Типично пермские нефти (не тяжелые) имеют меньший выход бензиновых фракций и значительно большее со-дгржание смолисто-асфальтеновых компонентов, чем нефти каменноугольных отложений. В бензиновой фракции высокое содержание метановых и нафтеновых УВ и очень низкое — ароматических. [c.71]

    Наличие пяти генетических типов нефтей свидетельствует о том, что в Прикаспийской впадине и в ее обрамлении нефти в девонских, каменноугольных, пермских, триасовых и юрских отложениях имели свои независимые источники генерации УВ, свои нефтегазоматеринские породы. Нефти каждого генотипа различаются не только по генетическим критериям, они имеют также и свою специфику химического состава, что нашло отражение в усредненных данных. Так, для нефтей "юрского" генотипа характерно самое вьюокое содержание нафтеновых УВ в бензинах - 77 % (в остальных 43—59 %) и низкое ароматических УВ - 4,2 % (в остальных 9-12 %). Для нефтей "триасового" генотипа отличительной чертой является самое низкое содержание ароматических ядер в нафтено-ароматической фракции — 25 % (в остальных 30—38 %). В нефтях "пермского" генотипа отмечается наиболее низкая доля метано-нафтеновых УВ (52 % по сравнению с 66—70 %) и самая вьюокая — нафтено-аро-матических (25 % по сравнению с 14—23 %), а также наличие во всех нефтях ванадиевых порфиринов. В нефтях "каменноугольного" генотипа отмечается самое высокое содержание ароматических ядер в нафтено-аро-матической фракции — 33,8 % и наибольшее количество метановых УВ в бензинах (46 % по сравнению с 18-42 %) и метано-нафтеновых УВ в [c.72]

    Для нефтей, залегающих в каменноугольных отложениях, не выявлено корреляционной связи между их свойствами и составом, с одной стороны, и глубиной их залегания и пластовой температурой, с другой [5]. Поэтому использовать уравнения регрессии для прогнозирования состава нефтей этих отложений не представляется возможным. Единственный показатель, который можно прогнозировать для всех нефтей палеозоя, — это степень их ароматичности (содержание ароматических УВ в бензиновой фракции), которая является функцией сульфатности вод и пластовой температуры (/ 0,85). Из табл. 52 видно, что содержание низкокипящих ароматических УВ возрастает с увеличением как температуры, так и сульфатности вод, причем резкое изменение последней (55-275 мг/л) слабо сказывается на степени ароматичности бензиновой фракции. Рост температуры вызывает более заметное ее увеличение. [c.163]

    Расчетный метод пригоден для прямогонных и полученных каталитическим крекингом дизельных фракцпй, для топлив, полученных в результате их смешения метод не употребляется для расчета цетановых чисел топлив, содержаш их ощутимое колпчество остаточных фракций, продуктов термического крекинга, высоколетучих (кипящих ниже, чем керосиновая фракция) продуктов не применяется он также и для топлив, содержащих продукты перегонки каменноугольных смол, растительные и животные жиры, а также для топлив с повышающими цетаповую характеристику присадками. [c.443]

    Для каменноугольных смол, в том числе и первичных, особенно характерно высокое содержание ароматических углеводородов обычно здесь лишь Б низкокипящих бензиновых фракциях преобладают парафиновые и олефино1Еие углеводороды. Во фракции 75—150°, наряду с алифатическими углеводородами, были найдены также ароматические и гидроароматические. Бо количеству самым незначительным является содержание бензола количество толуола в 2—з раза больше, еще выше содержание ксилола. [c.49]

    Первоначально крэкпнг-процесс был предложен для целей получения легких бензиновых углеводородов из тяжелых фракций нефти. Тогда, конечно, главный интерес представляло рассмотрение лишь термических превращений углеводородов, так как кислородсодержащие соединения (фенолы, кетоны и кислоты) заключаются в природной нефти в ничтожном количестве. В настоящее время крэкинг-проце сс постепенно распространяется и на другие исходные материалы первичный каменноугольный деготь, растительные масла, синтетическую нефть (например синтол Ф. Фишера), а поэтому значительный интерес теперь представляет также и рассмотрение термических превращений сислородсодержащих соединений. [c.259]

    Эфир качественно открывается обра боткой легкой (до 40 > (фракции бензина хромовой кислотой. 5 сл однопроцентного раствора К2СГ2О7 смешивается с несколькими каплями слабой серной кислоты. К смеси прибавляется 5 сл бензина и немного 2—4% перекиси водорода. Всплывший слой получает синюю окраску. Сероуглерод может попасть в бензин вместе с плохо очищенным каменноугольным бензолом.. Для качественного открытия сероуглерода к бензину прибавляют спиртового едкого кали, отчего появляются бесцветные игольчатые кристаллики этилксантогената. [c.137]

    Ароматические углеводороды, полученные из нефти путем ее пиролиза, составляют главную малсу легкого масла из смолы. В отличие от соответствующей фракции каменноугольной, в ней нет феБКЬ лов и вообще кислородных соединений, а также сернистых и адоти-стых. 1 После ароматических углеводородов главную роль играют в легком масле, уже очищенном серной кислотой, углеводороды ряда [c.407]

    По поводу испытания бензола в этих условиях необходимо сделать несколько замечаний оба описанных способа перегонки не согласованы с тем, что может дать нефтебензольная промышленность, оба как бы покрывают те недостатки, устранение которых не представляет никаких особенных технических затруднений. Именно, бензол и толуол легко могут быть получены в более чистом состоянии, чем это предусматривают условия артиллерийского ведомства. Употребление слишком длинного холодильника маскирует действительную разницу между началом и концом кипения фракций, особенно же между началом кипения и моментом падения первой каили. Инструкция, повидимому, безоговорочно воспользовалась аппаратом, предложенным давно для технического анализа каменноугольного бензола, к которому бывает примешан обыкновенно толуол. В этом случае неточность определення нокрывает разбираемую ошибку. Она происходит оттого, что количество нервых фракций, действительно кипящих ниже условленных пределов, слишком неве- [c.411]

    Из антрацен01В0Й фракции каменноугольной смолы с выходом 80% при расходе водорода 5% получены ароматазированные продукты индивидуальные ароматические углеводороды С —Св, нафталин и его гомологи В опыте продолжительностью 4000 ч показана возможность гидроочистки сырого коксохимического бензола под давлением коксового газа до содержания серы 0,0002% (в сырье 0,3%) [c.41]


Смотреть страницы где упоминается термин Каменноугольная фракции: [c.228]    [c.28]    [c.92]    [c.138]    [c.451]    [c.22]    [c.49]    [c.421]    [c.429]    [c.35]    [c.272]    [c.193]    [c.170]    [c.46]    [c.155]    [c.304]    [c.317]    [c.318]   
Органическая химия (1976) -- [ c.70 ]




ПОИСК







© 2025 chem21.info Реклама на сайте