Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Таллий обмен

    Другим типом обмена, который имеет особенно большое значение, является перенос электрона. Этот тип обмена можно наблюдать, когда элемент присутствует в двух различных степенях окисления, как, например, Т1(+1) и Т1( + И1). В этом случае можно добавить меченый Т1(+1) к раствору, содержащему оба окисленных состояния таллия, и, если произойдет электронный обмен, то меченые атомы распределятся между этими двумя окисленными состояниями. Скорость электронного обмена сильно изменяется в различных образцах и зависит от таких факторов, как число и состояние электронов, геометрические формы иона и т. д. [c.422]


    Технология извлечения таллия. Указанные в предыдущем параграфе исходные материалы в большинстве случаев содержат таллий в малой концентрации (порядка сотых долей процента), что делает непосредственное извлечение из них таллия невыгодным. Для получения более богатых концентратов пользуются методом возгонки. Таллий улетучивается при обжиге как в окислительной, так и в восстановительной атмосфере. Это дает возможность сочетать получение обогащенных таллием возгонов с извлечением других ценных компонентов, например свинца. Так, на некоторых польских заводах различные отходы, в том числе пыли от агломерации свинцовой руды, кадмиевые шламы, свинцовые кеки и т. п., обрабатывают во вращающихся печах вместе с коксом, железом и едким натром. Получаются возгоны с 0,2— 0,6% таллия [189]. На некоторых свинцовых заводах пыли агломерационных машин подвергают окислительному обжигу при 450—500°, чтобы перевести соединения цинка и кадмия в растворимую форму. При этом также получаются вторичные возгоны, сильно обогащенные таллием [190]. Особенно хорошее обогащение получается при хлорирующем обжиге, т. е. с добавкой хлорида натрия или сильвинита. Равновесие обменной реакции [c.343]

    Кроме осаждения таллия в виде малорастворимых соединений, осаждают его цементацией — действием цинковой пыли или амальгамы — и выделяют из растворов экстракцией, ионным обменом или сорбцией. Выбор того или иного метода выделения таллия из исходных растворов в значительной мере определяет всю дальнейшую технологию. [c.344]

    Обменная реакция с сульфатом цинка протекает медленно. Чтобы полностью извлечь таллий из сульфидного концентрата, приходится выщелачивать, каждый раз фильтруя, 5—7 раз. Это весьма осложняет процесс, так как осадки плохо отфильтровываются. Таллий, получаемый по этому так называемому сульфидно-солевому способу, содержит до десятых долей процента примеси свинца, кадмия и меди и по чистоте значительно уступает таллию, полученному другими способами [92]. [c.344]

    Са2+, Sf2+, Mg2+ и Pb +, в то время как обмен с участием ионов NHI, Ва +, Zn , Ni + и Со + приводил к разрушению структуры [14]. В табл. 15 представлены данные о степени замещения, достигаемой при обмене алкиламмониевыми ионами. Постоянная элементарной ячейки изменяется незначительно, от 12,273 А для NaA до 12,285 А для Т1А, тогда как содержание воды в ячейке уменьшается с увеличением радиуса катиона до 28,6 молекул для NaA (Гма = = 0,98 А) до 22,6 для Т1А (/-ti=1,49 А). Химический анализ ионообменника, участвовавшего в обмене, показывает, что не всегда тринадцатый атом натрия, находящийся в р-клетке, может быть замещен. Так, например, предельные формы, полученные путем замещения натрия ионами серебра, таллия и кальция, отвечают следующим формулам  [c.76]


    Обмен натрия на таллий уменьшает объем пор приблизительно на 250 а в расчете на элементарную ячейку, т. е. на 30%. Анализ кристаллической структуры Т1А [65] показывает, что катионы локализованы в а-полости на осях третьего порядка и, следовательно, должны препятствовать адсорбции воды. [c.439]

    Цеолит типа А проявляет двойной понно-ситовой эффект. Во-первых, его -полости доступны только для катионов небольшого размера, которые могут туда проникать через одинарные 6-член-ные кольца. Во-вторых, крупные органические катионы (например, тетраметиламмоний) ие могут пройти сквозь 8-членные кольца в а-полости. Каждая псевдокубическая элементарная ячейка цеолита А обычно состоит из 24 тетраэдров (А1, Si)04 и содержит 12 одновалентных ионов (см. гл. 2). Обнаружено, что некоторые образцы цеолита А окклюдируют в -полостях до 1 иона Na вместе с компенсирующим анионом, вероятно АЮ". Содержание избыточных ПОНОВ натрия, расположенных в -полостях цеолита А, ие превышает 1 катиона Na+ на -полость [9, 12, 13]. При этом общее число катионов увеличивается до 13 па элементарную ячейку. Поэтому действительная величина ионообменной емкости цеолита, содержащего (12-1- х) катионов натрия в расчете на элементарную ячейку (где О < а < 1), зависит от природы катиона, на который замещается натрий [9]. Поскольку серебро (г = 1,26 А) способно обмениваться со всеми ионами Na , в том числе и прочно удерживаемыми в -полостях, при обмене натрия на серебро можно определить предельную величину ионообменной емкости. Ион Tl (г = 1,40 А) не может проникнуть сквозь 6-членные кольца в -полости, поэтому ионы таллия способны обменять не больше чем 12 ионов натрия в расчете на элементарную ячейку. [c.553]

    Ионообменная емкость типичных образцов цеолита У ниже, чем у цеолита X, из-за более низкого заряда каркаса. В гидратированных формах этих цеолитов, как показали результаты изучения ионного обмена [5, 19], наблюдается различное распределение катионов. Многие реакции ионного обмена прп нормальной температуре пе приводят к полному замещению катионов (табл. 7.6). В большинстве случаев обмен описывается изотермой типа г. Так, изотермы обмена на цезий, аммоний и таллий достигают своего предельного значения при Az = 0,7. При этом около 16 одновалентных катионов, занимающих места Sj, не обмениваются (рис. 7.6), что говорит о неспособности замещающих катионов проникать при комнатной те.мпературе в -полости. Это также означает, что из 51 одновалентного иона, содержащегося в элементарной ячейке исходной формы, замещаются 35. Разность — 16 катионов — как раз соответствует 16 ионам, локализованным в местах Si внутри гексагональных призм. Поэтому порядок селективности изменяется в зависимости от степени обмена. Если степень обмена ниже 0,68, избирательность уменьшается в ряду [c.565]

    Иопы лития, натрия, серебра и калия занимают при обмене места в -полостях. Как и следовало он идать, эти катионы в первую очередь занимают те места в структуре, где они образуют прочные связи с каркасом. Катионы таллия замещают все катионы в цеолите X, но не обмениваются с 16 катионами цеолита У, расположенными в местах Sj. Причина этого не вполне понятна. [c.565]

    А для NaA до 12,285 А для Т1А, тогда как содержание воды в ячейке уменьшается с увеличением радиуса катиона до 28,6 молекул для NaA (гка = =0,98 А) до 22,6 для Т1А (гт1=1,49 А). Химический анализ ионообменника, участвовавшего в обмене, показывает, что не всегда тринадцатый атом натрия, находящийся в р-клетке, может быть замещен. Так, например, предельные формы, полученные путем замещения натрия ионами серебра, таллия и кальция, отвечают следующим формулам  [c.76]

    При исследовании спектров ядерного магнитного резонанса тяжелых элементов в виде твердых веществ, а именно металлического серебра, таллия и окиси таллия, было найдено [76], что ширина линии ядерного резонанса значительно превышает ширину, которую можно было бы ожидать на основе обсуждавшегося выше дипольного взаимодействия. Более того, было найдено, что таллий и окись таллия дают ширину Линии, являющуюся функцией изотопного состава вещества (ТР°з Тро ). Эти результаты были объяснены [77, 78] при постулировании обмен- [c.32]

    I и /. В молекулах, содержащих легкие элементы, Ац имеет величину порядка 102 цикл сек и энергия взаимодействия значительно меньше, чем энергия дипольного взаимодействия. Обменное взаимодействие проявляется в этом случае в спектрах ядерного магнитного резонанса жидкостей и газов, где диполь-ное взаимодействие усредняется до нуля за счет беспорядочного молекулярного движения. Константа A j возникает вследствие магнитного взаимодействия спина ядра со спином электрона и, таким образом, пропорциональна произведению атомных сверхтонких расщеплений у рассматриваемых атомов. Эти расщепления в свободном атоме зависят от квадрата атомной (з-со-стояние) волновой функции неспаренного электрона у ядра. 5-Электронная плотность валентных электронов у ядра возрастает с увеличением атомного номера, и для таллия она в 20 раз больше, чем для водорода, так что для металлического таллия Ац оказывается примерно в 400 раз больше, чем для молекулы водорода Ац = 43 цикл сек). [c.33]


    Изотопный обмен в водных растворах между трех- и четырехвалентным церием, между трех- и двухвалентным железом, между трех- и одновалентным таллием осуществляется по механизму электронных переходов  [c.180]

    Второй метод включает обмен между свинцом и таллием (I). К щелочному раствору свинца прибавляют РЬ ° и встряхивают смесь с хлороформным раствором диэтилдитиокарбамината таллия (I) меченного TF° . Свинец вытесняет таллий (I) из экстракта. Степень обмена определяют по активности а но радиоактив- [c.243]

    III группа. Так как бромид брома полностью смешивается с бромом (бор, алюминий, индий, таллий), обмен в системе ВВгз + Вгг происходит быстро. Так же легко идет обмен с бромидом алюминия за счет образования комплексного бромида. [c.205]

    Сульфиды, как уже указано, легко образуются при непосредственном взаимодействии металлов с серой, а также в результате обменных реакции между солями этих металлов н растворимыми сульфидами, в том числе и сероводородом. Сульфиды цинка ZnS— белого, кадмия dS — желтого и ртути HgS — красного и черного цвета в поде нерастворимы. Кристаллический сульфид цинка, содержащий небольшие количества активаторов (медь, марганец, таллий), способен после освещения длительно светиться. [c.332]

    Способ введения гидрирующего компонента также зависит от типа носителя. В случае микросферических или порошкообразных аморфных алюмосиликатов, магний- или цирконийсиликатов гидрирующие компоненты смешивают с растворами солей соответствующих ме таллов. Если в качестве носителей используют готовые шариковые катализаторы крекинга, то для введения гидрирующих компонентов шарики обрабатывают раствором солей металлов. Для цеолитных носителей предпочтителен катионный обмен из растворов солей, содержащих желаемые катионы, с последующей операцией отмывки от побочных продуктов реакции. [c.83]

    К веществам, обладающим ионообменными свойствами, принадлежат некоторые марки стекол. Их структуру составляет силикатный каркас и электростатически связанные с ним катионы, способные к обмену на ионы водорода раствора. Из таких стекол изготовляют стеклянные электроды, обладающие свойствами водородного электрода. Стеклянные электроды при.меняют для определения pH растворов в условиях, когда гюльзование водородным электродом затрзднитель-но или невозможно (например, в присутствии сильных окислителей). Разработаны также стекла, электродный потенциал которых определяется концентрацией других ионов, — например, ионов натрия, других щелочных элементов, серебра, таллия, иона аммония. [c.304]

    Одним из проявлений биологической функции селена в животном организме служит его участие в обмене серосодержащих аминокислот. Этот элемент предохраняет от окисления SH-группы белков мембран эритроцитов и митохондрий, а также противодействует набуханию митохондрий, вызываемому тяжелыми металлами. Селеноаминокислоты, образовавшиеся в результате метаболизма селена, обладают радиопротектор-ными свойствами, ингибируя образование свободных радикалов и способствуют детоксикации таких вредных отходов производства, как метил-ртуть и соли кадмия а также висмута, таллия и серебра [c.18]

    Эфиры фтормуравьиной кислоты получают из эфироэ хлормуравьиной кислоты обменом галоида под действием фторида таллия [816] или, если нет дорогого T1F, из карбогшлбромфторида, O FBr и спирта, причем образуется исключительно фтор-муравьиный эфир. [c.202]

    Для синтеза фенил- н бензилнатрия используют обмен водорода иа ме талл. [c.153]

    В нормальных условиях нелабильными по отношению к межхелатному обмену являются за редким исключением комплексонаты таких катионов, как бериллий(П), платина(П), палладий(П), ртуть(П), кобальт(П1), скандий(П1), ит-трий(П1), лютеций(И1), индий(П1), таллий(П1), хром(П1), платина(IV), цирконий(IV), гафний(IV), ванадий(V), молибден (VI) [320, 325, 347, 812]. Лабильные комплексонаты образуют, как правило, катионы щелочных и щелочноземельных элементов, магния(II), лантана(III), актиноидов [320, 326, 352, 812]]. Промежуточное положение занимают комплексы олова(П), кадмия(П), цинка(П), свинца(П), алюминия(П1) [320,810,813,814]. [c.423]

    Моноарильные соединения таллия(III) являются удобными промежуточными продуктами для проведения различных реакций замещения в ароматическом ряду. Будучи более стабичьными, чем моноалкильные соединения, эти продукты обычно могут быть выделены и охарактеризованы без особых затруднений. Соединения этого тппа могут быть получены путем обменных взаимодействий между тригалогенидами или трикарбоксилатами таллия п соответствующими органическими соединениями бора [127], ртути [127], кремния [134] нли олова [127] (схемы 184, 185). [c.144]

    Катионы Nati частично закрывают окно, уменьшая его эффективный размер, что влияет на адсорбцию газов и паров. Оставшийся один ион Nain локализован на 4-членном кольце. При обмене 8 ионов Naна 4 иопа Са в каждой ячейке остается 8 катионов, и все они занимают места Sj, а места Зц остаются свободными. В результате окна оказываются полностью открытыми и цеолит может адсорбировать молекулы с диаметром 4,3 А- В дегидратированном цеолите Т1А ионы ТР локализуются в местах Si, но из-за своего большого размера оказываются смещенными от плоскости 6-членного кольца на 1,12 У внутрь а-полости [103]. Некоторые из ионов таллия располагаются в -полостях. Остальные 4 иона Т " локализуются вблизи центров 8-члеиных колец [112]. В цеолите КА ионы К , расположенные в местах 8ц, уменьшают свободный диаметр 8-членного кольца, в результате чего размер адсорбируемых молекул ограничен диаметром 3 А. [c.96]

    Изучение равновесий при обмене иатрия в цеолите NaA на ионы лития, калия, цезия, серебра и таллия показало, что полное замещепие катионов натрия происходит только при условии, если большие а-полости могут окклюдировать соответствующие нитраты. В противном случае обмен является иеполиым. При малых концентрациях обменивающихся катионов для системы цеолит — NaA — нитрат установлен следующий ряд селективности  [c.605]

    Подробные исследования по вопросу об обмене галоидом между органическими галоидсодержащими соединениями и галоидными металлами были сделаны Лотар Мейером и его сотрудниками При этом было уста-н 1влено, что для введения в органические соединения иода на место хлора или б.рома (а также брома на место хлора) особенно удобны иодиды (или бромиды) щелочных и щелочноземельных металлов, а также иодиды алюминия, марганца и кобальта противоположно действуют медь, серебро, ртуть, олово, свинец, мышьяк и сурьма реакции с солями цинка, кадмия, таллия, висмута, железа и никеля идут в обоих направлениях [c.446]

    Рассмотрим электрод в таком растворе в некоторый момент времени I. Концентрация меченых ионов- в приэлектродном слое в процессе обмена должна изменяться. Однако, если в обмене принимают участие не один, а много ионных слоев раствора то концентрация меченых ионов в приэлектродном слое может счи таться постоянной. В то же время при температуре, далекой от температуры плавления, когда коэффициент самодиффузии в ме талле очень мал, в обмене должен принимать участие лишь по--верхностный слой ионов электрода. [c.208]

    Интерпретация кинетики реакций между двумя типами ио нов металлов В и 23 особенно трудна, так как обе центральные группы могут образовывать комплексы с лигандом А. Кинетикг изотопного обмена между двумя ионами одного металла в разновалентных состояниях подробно обсуждается Амфлетом [1]. Странксом и Уилкинсом [57]. Это реакции первого порядка относительно общих концентраций группы В н 5В, Подобная кинетика наблюдалась для окислительно-восстановительных реакций между ионами различных металлов, например для систем кобальт(Н1) — таллий(1) [2] и железо(П1)—олово(П) [20]. Если ступенью, определяющей скорость указанных обменных и окислительно-восстановительных реакций, является [c.365]

    Ван Эркеленс [537] описал два способа определения свинца, включающие обмен диэтилдитиокарбаминатов свинца и таллия. По первому методу диэтилдитиокарбаминат свинца экстрагируют ССи, затем встряхивают экстракт со щелочным раствором (П1) при этом таллий вытесняет свршец. Измеряют радиоактивность в органической фазе. По второму методу к водному раствору свинца добавляют и встряхивают с раствором ди- [c.176]

    Ван Эркеленс разработал два обменных метода определения свинца [537]. Первый метод включает обмен между диэтилдитио-карбаминатом свинца, находящимся в органической фазе, и таллием (III), присутствующим в водной фазе. Из анализируемого раствора свинец экстрагируют четыреххлористым углеродом ири помощи диэтилдитиокарбамината натрия, затем отделяют экстракт и встряхивают его с водным раствором TF° . Таллий (III) вытесняет свинец из органической фазы. Измеряя активность ТР° в экстракте, находят количество свинца в анализируемой пробе. [c.243]


Смотреть страницы где упоминается термин Таллий обмен: [c.151]    [c.337]    [c.216]    [c.309]    [c.63]    [c.81]    [c.1534]    [c.79]    [c.605]    [c.79]    [c.346]    [c.129]    [c.365]    [c.305]    [c.492]    [c.279]    [c.659]    [c.548]    [c.242]    [c.249]    [c.249]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопный обмен таллием

Изотопный обмен таллием между

Изотопный обмен таллием между соединениями

Талл nil ионный обмен

Таллий

Таллий бромид, обмен индуцированный

Таллий обменные реакции с диэтилдитиокарбаминатами

Таллий хромат, обмен индуцированный

Таллия гидроокись, обмен индуцированный



© 2024 chem21.info Реклама на сайте