Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Талл nil ионный обмен

    Кроме осаждения таллия в виде малорастворимых соединений, осаждают его цементацией — действием цинковой пыли или амальгамы — и выделяют из растворов экстракцией, ионным обменом или сорбцией. Выбор того или иного метода выделения таллия из исходных растворов в значительной мере определяет всю дальнейшую технологию. [c.344]


    Кристаллы изолятора в качестве счетчиков. Принцип действия ионизационной камеры не исчерпывается газонаполненными камерами. Использование для этой цели более плотных ионизируемых сред дает очевидные преимущества не прибегая к неоправданно большим объемам, ионы с большой энергией можно полностью остановить в пределах камеры цри этом получаются вполне регистрируемые импульсы при прохождении отдельных электронов или у-квантов, несмотря на их низкую удельную ионизацию. Были испытаны ионизационные камеры, наполненные жидким аргоном, однако более перспективными инструментами стали так называемые кристаллические счетчики, являющиеся, по существу, ионизационными камерами с твердыми диэлектриками между, плоско-параллель-ными электродами. Ионизирующее излучение перебрасывает электроны в полосу проводимости — процесс, аналогичный ионизации атома или молекулы,— и эти электроны затем движутся с достаточно высокими подвижностями к положительному электроду. Положительные заряды (электронные дырки ) движутся в противоположном направлении, но не за счет движения ионов по объему кристалла, а в результате последовательных обменов электронами между соседними положениями в решетке. Кристаллы алмаза и сульфида кадмия успешно применялись для этих целей при комнатной температуре. Другие кристаллы, такие, как галогепиды серебра и таллия, являющиеся ионными проводниками при комнатной температуре, могут использоваться при низких температурах. Средняя энергия, необходимая для перевода электрона в полосу проводимости, составляет для таких твердых диэлектриков, как правило, около 10 эв, что меньше, чем средняя энергия (—30 эв), расходуемая на образование пары ионов в газе. [c.141]

    Цеолит типа А проявляет двойной понно-ситовой эффект. Во-первых, его -полости доступны только для катионов небольшого размера, которые могут туда проникать через одинарные 6-член-ные кольца. Во-вторых, крупные органические катионы (например, тетраметиламмоний) ие могут пройти сквозь 8-членные кольца в а-полости. Каждая псевдокубическая элементарная ячейка цеолита А обычно состоит из 24 тетраэдров (А1, Si)04 и содержит 12 одновалентных ионов (см. гл. 2). Обнаружено, что некоторые образцы цеолита А окклюдируют в -полостях до 1 иона Na вместе с компенсирующим анионом, вероятно АЮ". Содержание избыточных ПОНОВ натрия, расположенных в -полостях цеолита А, ие превышает 1 катиона Na+ на -полость [9, 12, 13]. При этом общее число катионов увеличивается до 13 па элементарную ячейку. Поэтому действительная величина ионообменной емкости цеолита, содержащего (12-1- х) катионов натрия в расчете на элементарную ячейку (где О < а < 1), зависит от природы катиона, на который замещается натрий [9]. Поскольку серебро (г = 1,26 А) способно обмениваться со всеми ионами Na , в том числе и прочно удерживаемыми в -полостях, при обмене натрия на серебро можно определить предельную величину ионообменной емкости. Ион Tl (г = 1,40 А) не может проникнуть сквозь 6-членные кольца в -полости, поэтому ионы таллия способны обменять не больше чем 12 ионов натрия в расчете на элементарную ячейку. [c.553]


    Кроме осаждения таллия в виде малорастворимых соединений, в технологии находит применение также осаждение таллия цементацией — действием цинковой пыли или амальгамы. В последние годы были предложены методы выделения таллия из растворов экстракцией и ионным обменом. Выбор того или иного метода выделения таллия из исходных растворов в значительной мере определяет всю дальнейшую технологию. [c.214]

    При определении таллия указанным методом для отделения сурьмы применены ионный обмен [16], гидролиз солей сурьмы [41] и цементация на металлической меди [9]. В последней работе рекомендуется окисление таллия проводить пергидролем в условиях, исключающих возможность окисления сурьмы. [c.128]

    Другим типом обмена, который имеет особенно большое значение, является перенос электрона. Этот тип обмена можно наблюдать, когда элемент присутствует в двух различных степенях окисления, как, например, Т1(+1) и Т1( + И1). В этом случае можно добавить меченый Т1(+1) к раствору, содержащему оба окисленных состояния таллия, и, если произойдет электронный обмен, то меченые атомы распределятся между этими двумя окисленными состояниями. Скорость электронного обмена сильно изменяется в различных образцах и зависит от таких факторов, как число и состояние электронов, геометрические формы иона и т. д. [c.422]

    Са2+, Sf2+, Mg2+ и Pb +, в то время как обмен с участием ионов NHI, Ва +, Zn , Ni + и Со + приводил к разрушению структуры [14]. В табл. 15 представлены данные о степени замещения, достигаемой при обмене алкиламмониевыми ионами. Постоянная элементарной ячейки изменяется незначительно, от 12,273 А для NaA до 12,285 А для Т1А, тогда как содержание воды в ячейке уменьшается с увеличением радиуса катиона до 28,6 молекул для NaA (Гма = = 0,98 А) до 22,6 для Т1А (/-ti=1,49 А). Химический анализ ионообменника, участвовавшего в обмене, показывает, что не всегда тринадцатый атом натрия, находящийся в р-клетке, может быть замещен. Так, например, предельные формы, полученные путем замещения натрия ионами серебра, таллия и кальция, отвечают следующим формулам  [c.76]

    Ионообменная емкость типичных образцов цеолита У ниже, чем у цеолита X, из-за более низкого заряда каркаса. В гидратированных формах этих цеолитов, как показали результаты изучения ионного обмена [5, 19], наблюдается различное распределение катионов. Многие реакции ионного обмена прп нормальной температуре пе приводят к полному замещению катионов (табл. 7.6). В большинстве случаев обмен описывается изотермой типа г. Так, изотермы обмена на цезий, аммоний и таллий достигают своего предельного значения при Az = 0,7. При этом около 16 одновалентных катионов, занимающих места Sj, не обмениваются (рис. 7.6), что говорит о неспособности замещающих катионов проникать при комнатной те.мпературе в -полости. Это также означает, что из 51 одновалентного иона, содержащегося в элементарной ячейке исходной формы, замещаются 35. Разность — 16 катионов — как раз соответствует 16 ионам, локализованным в местах Si внутри гексагональных призм. Поэтому порядок селективности изменяется в зависимости от степени обмена. Если степень обмена ниже 0,68, избирательность уменьшается в ряду [c.565]

    А для NaA до 12,285 А для Т1А, тогда как содержание воды в ячейке уменьшается с увеличением радиуса катиона до 28,6 молекул для NaA (гка = =0,98 А) до 22,6 для Т1А (гт1=1,49 А). Химический анализ ионообменника, участвовавшего в обмене, показывает, что не всегда тринадцатый атом натрия, находящийся в р-клетке, может быть замещен. Так, например, предельные формы, полученные путем замещения натрия ионами серебра, таллия и кальция, отвечают следующим формулам  [c.76]

    Солдатов и Старобинец [249, 250] изучили стандартные термодинамические функции обмена Ag+—Н+ и Т1 —№ на сульфополистирольных катионитах. Обмен иона таллия характеризуется большими отрицательными величинами АЯ° и А5°, тогда как значения А0° почти одинаковы. Эти авторы предположили, что ионы таллия и серебра образуют ионные пары с сульфогруппой, однако в случае отрицательно гидратированного иона таллия образование ионной пары происходит без затраты энергии на дегидратацию. Отметим, что и для этих пар ионов также обнаружена описанная выше линейная зависимость АН° от Д5° для разных степеней сшивки. [c.160]

    Влияние цианид-ионов на обмен между двумя степенями окисления таллия. [c.142]

    К веществам, обладающим ионообменными свойствами, принадлежат некоторые марки стекол. Их структуру составляет силикатный каркас и электростатически связанные с ним катионы, способные к обмену на ионы водорода раствора. Из таких стекол изготовляют стеклянные электроды, обладающие свойствами водородного электрода. Стеклянные электроды при.меняют для определения pH растворов в условиях, когда гюльзование водородным электродом затрзднитель-но или невозможно (например, в присутствии сильных окислителей). Разработаны также стекла, электродный потенциал которых определяется концентрацией других ионов, — например, ионов натрия, других щелочных элементов, серебра, таллия, иона аммония. [c.304]


    Сульфоугли, являющиеся продуктами сульфирования бурых и каменных углей, являются более сильными сорбентами по отношению к таллию, что объясняется присутствием таких ионогенных групп, как гидроксильная, карбоксильная и сульфогруппа. Поглощение таллия на этих материалах при pH 4—9 носит ионообменный характер. При более высоких pH наряду с ионным обменом протекает адсорбция таллия. Описано выделение таллия сульфо-углем из растворов после выщелачивания пылей свинцового производства. Выделялся таллий из среды с pH 12 при комнатной температуре. Элюирование производилось 3%-ной серной кислотой, после чего сульфоуголь промывкой 5%-ным раствором сульфата натрия переводился в Na-форму [175]. [c.228]

    На английском языке напечатаны труды конференций по химии экстракции, состоявшихся в Харуэлле, Гетеборге и Иерусалиме отдельные части из первых двух книг выпущены в русском переводе. Издана большая монография Маркуса и Кертеса Ионный обмен и экстракция комплексов ме-таллов . [c.10]

    Катионы Nati частично закрывают окно, уменьшая его эффективный размер, что влияет на адсорбцию газов и паров. Оставшийся один ион Nain локализован на 4-членном кольце. При обмене 8 ионов Naна 4 иопа Са в каждой ячейке остается 8 катионов, и все они занимают места Sj, а места Зц остаются свободными. В результате окна оказываются полностью открытыми и цеолит может адсорбировать молекулы с диаметром 4,3 А- В дегидратированном цеолите Т1А ионы ТР локализуются в местах Si, но из-за своего большого размера оказываются смещенными от плоскости 6-членного кольца на 1,12 У внутрь а-полости [103]. Некоторые из ионов таллия располагаются в -полостях. Остальные 4 иона Т " локализуются вблизи центров 8-члеиных колец [112]. В цеолите КА ионы К , расположенные в местах 8ц, уменьшают свободный диаметр 8-членного кольца, в результате чего размер адсорбируемых молекул ограничен диаметром 3 А. [c.96]

    Изучение равновесий при обмене иатрия в цеолите NaA на ионы лития, калия, цезия, серебра и таллия показало, что полное замещепие катионов натрия происходит только при условии, если большие а-полости могут окклюдировать соответствующие нитраты. В противном случае обмен является иеполиым. При малых концентрациях обменивающихся катионов для системы цеолит — NaA — нитрат установлен следующий ряд селективности  [c.605]

    Рассмотрим электрод в таком растворе в некоторый момент времени I. Концентрация меченых ионов- в приэлектродном слое в процессе обмена должна изменяться. Однако, если в обмене принимают участие не один, а много ионных слоев раствора то концентрация меченых ионов в приэлектродном слое может счи таться постоянной. В то же время при температуре, далекой от температуры плавления, когда коэффициент самодиффузии в ме талле очень мал, в обмене должен принимать участие лишь по--верхностный слой ионов электрода. [c.208]

    Интерпретация кинетики реакций между двумя типами ио нов металлов В и 23 особенно трудна, так как обе центральные группы могут образовывать комплексы с лигандом А. Кинетикг изотопного обмена между двумя ионами одного металла в разновалентных состояниях подробно обсуждается Амфлетом [1]. Странксом и Уилкинсом [57]. Это реакции первого порядка относительно общих концентраций группы В н 5В, Подобная кинетика наблюдалась для окислительно-восстановительных реакций между ионами различных металлов, например для систем кобальт(Н1) — таллий(1) [2] и железо(П1)—олово(П) [20]. Если ступенью, определяющей скорость указанных обменных и окислительно-восстановительных реакций, является [c.365]

    Статья 2 К. Бушоу приведена как иллюстрация оригинальных исследований соединений РЗМ с Зй-металлами Ре, N1 и Со. Наряду с изучением кристаллических структур этих соединений рассматриваются изменения магнитного момента ионов Зс -ме-таллов и точек Кюри с изменением молярного содержания РЗМ в соединении. Эти изменения интерпретируются с помощью модели -полос, З -металлов по Фриделю. Устанавливается, что обменная связь К и М ионов имеет антиферромагнитный характер и приводит к точкам компенсации на температурных кривых 1з Т). Можно надеяться, что знакомство с этой оригинальной статьей Бушоу после прочтения обзора Тейлора принесет несомненную пользу читателю и углубит его понимание рассматриваемой проблемы. [c.9]

    IV. К этой группе относятся определения всех веществ, которые недоступны или труднодоступны прямому комплексономет-рическому титрованию. Например, ионы серебра и таллия (I) можно, используя амальгаму цинка или кадмия, обменять на легко титруемые Zn или d - . Подобным же способом титруют многие восстанавливающиеся органические соединения, например нитросоединения, а также восстанавливающиеся анионы, например ар-сенат- или хромат-ионы. [c.131]

    Иное происходит при превращении плотных гексагональной или кубической упаковок в ОЦК структуру. Повышение температуры сопровождается не только увеличением энергии тепловых колебаний атомов, но и увеличением энергии электронов внешней оболочки ионов. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р -оболо-чек ионов, не перекрывающихся при низких температурах. Это приводит к переходу плотных низкотемпературных модификаций в высокотемпературные ОЦК структуры у натрия, бериллия, кальция, стронция, скандия, иттрия, всех лантаноидов, титана, циркония, гафния, таллия, актиния, тория, плутония и америция. По той же причине происходит превращение ГЦК у- Мп и у-Ре в ОЦК 8-модификации. Такой переход в эрбии, тулии, прометии, актинии был предсказан [57, 60] до его экспериментального подтверждения [116]. В результате повышения температуры разрушаются двухэлектронные ковалентные связи и образуются ионы с внешними р -оболочками, а следовательно, и ОЦК высокотемпературные модификации у урана, нептуния. Таким образом, повышение температуры сначала приводит к разрушению направленных двухэлектронных связей, сопровождающемуся переходом валентных электронов в свободное состояние и образованием плотных упаковок. При дальнейшем повышении температуры, вследствие перекрывания ортогональных р -оболочек, появляются ОЦК высокотемпературные модификации. [c.202]

    Алюминий отличается сравнительно низкими первым и вторым ионизационными потенциалами (5, 96 и 18, 74 эв) и очень высоким третьим (28, 31 эв) ионизационным потенциалом. В результате отделения двух внешних р,s-электронов и сохранения одного 3 -электрона ион алюминия приобретает внешнюю электронную оболочку, имеющую сферическую симметрию. Электронный газ с концентрацией два электрона на атом способствует упаковке сферических ионов алюминия в плотную гранецентрированную кубическую структуру. У галлия образуется ромбическая решетка, сходная с ковалентной решеткой Р-графита атомы галлия образуют деформированные гексагональные сетки, в которых каждый атом имеет трех ближайших соседей (одного на расстоянии 2,44 А, двух на расстоянии 2,71 А) и, кроме того, двух соседей в смежных слоях на расстоянии 2,74 А. Таким образом, структура носит ковалентный характер с числом связей, приближенно равным пяти. Индий имеет наипизший в группе Ша первый ионизационный потенциал (5, 76 ав). Атомы его, по-видимому, двукратно ионизированы и, обладая одним внешним электроном на 4 -уровне, соответствующим сферической симметрии иона упаковываются в плотную ГЦ тетрагональную решетку с отношением с/а=1,075. При повышении давления до Юкбар тетрагональность повышается до 1,088, а затем при увеличении давления до 100—110 кбар вновь понижается, так что можно ожидать появления ГЦК модификации. Наиболее электроположительный элемент П1а группы — таллий, подобно кальцию и стронцию, при низких температурах имеет плотную гексагональную решетку. В интервале 262— 302,5° таллий в результате коллективизации трех внешних электронов и обменного взаимодействия ионов с шестью d-орбиталями образует ОЦК решетку. [c.219]

    Свои положения Киланд проверил на основе экспериментальных данных Ротмунда и Корнфельда, Рамана и Шпренгеля (обмен на плавленом пермутите), а также Маршалла и Гупта (обмен на бентоните в калиевой, натриевой, водородной, серебряной формах и путнамских глинах). Для таких случаев, как, например, обмен ионов водорода и таллия [c.130]

    Ротмунд и Корнфельд объясняют непостоянство получаемых величин при обмене плавленого цеолита с определенными ионными парами таллий — натрий, кальций — натрий ограниченной смешиваемостью подобного мнения придерживается Киланд, который основывается по существу на исследованиях Маршалла и Гупта. Видимо, мнение Вигнера, что смешанные гели, которые обнаруживают свойства многовалентных соединений, можно рассматривать как тончайшую неоднородность, вообще справедливо для всех силикатных обменников. [c.270]

    Иной характер имеет ускоряющее действие СГ - и Вг "-ионов на изотопный обмен таллия, олова и ряда других катионов. В этом случае образуются комплексные ионы, содержащие по несколько галоген-ионов и имеющие пониженный положительный заряд, как, например, 8пС1з+ из и ЗСГ, или комплексные ионы противоположного знака, как, например, 8пС1 из и ЗСГ з4а [c.130]


Смотреть страницы где упоминается термин Талл nil ионный обмен: [c.63]    [c.492]    [c.79]    [c.605]    [c.79]    [c.129]    [c.249]    [c.336]    [c.296]   
Фотометрическое определение элементов (1971) -- [ c.383 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Обмен ионов

Таллий

Таллий обмен



© 2025 chem21.info Реклама на сайте