Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сахара также Углеводы а и формы

    Таким образом, классификация и номенклатура углеводов весьма сложна в связи с многообразием видов и таутомерных форм сахаров. Для лучшего усвоения классификации и номенклатуры сахаров дана схема (рис. 23), на которой приведена классификация и номенклатура моносахаридов (моноз). Моносахариды прежде всего в зависимости от числа углеродных атомов в их молекуле делятся на группы тетрозы, пентозы и т. д. По наличию в молекуле альдегидной или кетонной группировки каждая из этих групп моносахаридов делится на альдозы и кетозы. В схеме из восьми возможных стереоизомеров )-ряда альдогексоз приведена одна — О-глюкоза. Для -ряда также указан лишь один представитель — -глюкоза. В группе кетогексоз приведено по одному представителю каждого ряда стереоизомеров. На примерах О-глюкозы и Д-фруктозы показано, что моносахариды имеют таутомерные циклические формы, которые в зависимости от числа членов цикла делятся на пиранозы и фуранозы. Каждая из циклических форм моносахаридов в свою очередь в зависимости от расположения гидроксильной группы, стоящей у Г1ер-вого асимметрического атома углерода, может существовать в а- или р-форме. [c.220]


    Преимуществом колоночной хроматографии является возможность количественного фракционирования больших количеств веществ без превращения их в какие-либо производные. Однако хорошее разделение часто возможно лишь при малых скоростях элюирования, поэтому были разработаны новые виды колоночной хроматографии. Методы аффинной и адсорбционной хроматографии основаны на избирательной адсорбции молекул на нерастворимом адсорбенте, который содержит группы (молекулы), специфически взаимодействующие с молекулами подлежащих очистке соединений, например ингибиторы (для очистки ферментов) или антитела (для очистки антигенов) в настоящее время эти методы нашли широкое применение и для разделения углеводов. Невзаимодействующие с адсорбентом примеси удаляются, а связанный с адсорбентом сахар затем десорбируют способом, не приводящим к его разрушению. Десорбцию можно осуществить, изменяя pH, ионную силу среды или применяя соответствующий ингибитор взаимодействия, удерживающего вещество на адсорбенте. Для разделения ряда полисахаридов были использованы иммобилизованные формы (см. разд. 26.3.7.6) конканавалина А [40], являющегося фитогемагглютинином (лектином), который специфически взаимодействует с разветвленными полисахаридами определенного строения в настоящее время применяют и другие иммобилизованные фитогемагглютинины. Колоночная хроматография на носителях, покрытых полиароматическими соединениями [41], также находит применение для разделения полисахаридов. Благодаря достижениям в производстве носителей для жидкостной хроматографии под высоким давлением можно осуществить хроматографическое разделение быстро и избирательно описаны методы фракционирования небольших олигосахаридов, продолжающегося менее 1 ч [42]. [c.224]

    Очень интересные работы по химии сахаров, древесины и лигнина провел в 1887—1889 гг. Ф. Ф. Селиванов. Наиболее важными результатами его работ надо признать установление взаимопревращения альдоз и кетоз через энольную форму [74], а также открытие цветных реакций па углеводы [75]. [c.180]

    Другими исследователями было найдено, что скорости окисления оксидазами а- и Р-О-глюкозы различны. Показано также, что в ряде процессов (например, транспорт сахаров через клеточные мембраны) участвует ациклическая форма углевода. [c.75]

    Так, например, достигнуты большие успехи в извлечении растительных белков. Этому предшествовали в первую очередь работы по экстрагированию липидов (масла и жиры), а также извлечению углеводов (сахара и крахмалы). Сохраняет актуальность и процесс разделения компонентов сельскохозяйственного сырья для их более рационального использования в пищевой промышленности в форме изолятов, самих по себе функционально привлекательных, включаемых в состав различных смесей. [c.6]


    С другой стороны, в результате высокого массового содержания ионов гидросульфита в варочном растворе усиливается окисление сахаров по карбонильной группе. По сравнению со щелоками сульфитной варки в 2 раза возрастет содержание альдоновых кислот, присутствующих не только в мономерной форме, но и в виде концевых групп олигосахаридов. Повышенная величина pH варочного раствора способствует также частичному сульфонированию углеводов, содержание которых может достичь 5 % массы органических веществ щелока. [c.212]

    Строительными блоками химии углеводов являются простые сахара, или моносахариды. Они представляют собой многоатомные спирты, содержащие пять, шесть, семь или восемь атомов углерода. Они относятся также к числу карбонильных соединений (альдегидов или кетонов), но карбонильная группа, как правило, присутствует в форме циклического полуацеталя или полукеталя, возникающего в результате ее взаимодействия с одной из гидроксильных групп той же молекулы. [c.543]

    При фотосинтезе очень быстро образуются не только фосфорные эфиры сахаров или простые сахара, но и более сложные формы углеводов — сахароза, крахмал, клетчатка. Появление в листьях крахмала, например, можно наблюдать при помощи известной йодной пробы Сакса через несколько минут после начала фотосинтеза. Крахмал в листьях образуется настолько быстро, что 100 лет назад его даже считали первым устойчивым продуктом фотосинтеза. Почти так же быстро появляются в листьях и другие углеводы. Распад сложных форм углеводов до более простых в ряде случаев в растениях протекает также очень интенсивно. Это наблюдается, например, при прорастании семян, в которых основным запасным веществом является крахмал крахмал, содержащийся в эндосперме, превращается в сахара, используемые развивающимся зародышем. Интенсивный распад сложных форм углеводов наблюдается при старении вегетативных органов растений, когда в листьях преобладают не синтетические, а гидролитические процессы. Образующиеся при распаде простые сахара или их фосфорные эфиры оттекают в репродуктивные органы, где вновь превращаются в более сложные углеводы, которые откладываются в качестве запасных веществ. И, наконец, в растениях очень легко осуществляются и процессы взаимных превращений углеводов. Если путем иньекции или инфильтрации ввести в растение, например, глюкозу, то она очень быстро может превратиться во фруктозу, сахарозу, крахмал и другие углеводы и даже использоваться для построения молекул веществ неуглеводной природы — аминокислот, органических кислот, жиров и т. д. Так же легко подвергаются взаимным превращениям в растениях и другие сахара — сахароза, фруктоза, галактоза, мальтоза и т. д. Все эти факты свидетельствуют о том, что углеводы — очень подвижные вещества и что в тканях рас- [c.140]

    Триозы встречаются в животном организме обычно в форме сложных эфиров фосфорной кислоты. Способность других углеводов образовывать сложные эфиры с фосфорной кислотой также является их важной особенностью фосфорные эфиры сахаров играют исключительно большую роль в обмене веществ. [c.78]

    Под влиянием облучения семян, а также растений в последних нарушается углеводный обмен. В растениях сдвигается соотношение между разными формами растворимых углеводов. Анализ растений, выросших из облученных зерновок и обработанных растворами кининов, показал, что сдвиг в содержании сахаров, обусловленный облучением, под действием кининов восстанавливается (табл.4). [c.27]

    Окисление расщепляющими гликольные группировки реагентами (тетраацетат свинца, метаиодная кислота и т. д.) оказалось Удобным методом установления циклического строения углеводов (см. разд. 26.1.6.5) (10]. Так, в 1934 г. было показано [11], что при окислении как метил-а-О-, так и метил-р-О-глюкопиранозида расходуется 2 моль окислителя и выделяется 1 моль муравьиной Кислоты, что соответствует структуре пиранозида при окислении Фуранозида расходуется 2 моль окислителя и выделяется 1 моль формальдегида. Окислением метаиодной кислотой восстанавли-ающих сахаров в водных растворах показано, что они также су- Дествуют в пиранозной форме. Так, окисление )-глюкозы при [c.131]

    Характерным для всех илов является преобладание неспороносных грамотрицательных палочек (рис. И). Все выделенные штаммы способны усваивать ту или иную форму минерального азота (рис. 12) и почти все штаммы обладают денитрифицирующей способностью (рис. 13). Отношение к сахарам различно (рис. 14). Глюкоза, сахароза и мальтоза усваиваются большим количеством микробов, лактозу ферментирует наименьший процент выделенных микробов. Наибольший процент микробов, ферментирующих углеводы с образованием кислоты, а также разлагающих крахмал, обнаружен в иле, очищающем фекально-хозяйственную сточную воду (рис. 13). [c.44]

    Рост производства этанола связан с широтой его применения в химической промышленности. Он прекрасный растворитель, антифриз, экстрагент. Этанол служит также субстратом для синтеза многих растворителей, красителей, лекарственных препаратов, смазочных материалов, клеев, моющих средств, пластификаторов, взрывчатых веществ и смол для производства синтетических волокон. Его используют в двигателях внутреннего сгорания либо в безводном виде, либо в форме гидратированного этанола. Среди растений, продуцирующих этиловый спирт, следует вьщелить маниок, злаки (особенно кукурузу) и топинамбур, у которого запасным углеводом является инулин. Используются также сахарный тростник, ананас, сахарная свекла, сорго, у которых основной углевод — сахароза. При переработке сахарного тростника его тщательно давят, целлюлозу (жом) отделяют от сладкого сока и сжигают, а сок концентрируют, стерилизуют и подвергают брожению. Этот раствор отделяют от твердых компонентов и далее из 8 —10%-го спиртового раствора путем перегонки получают этанол. Из оставшейся жидкости (стиллаж) после соответствующей переработки извлекают компоненты удобрений с выходом 2—3 %. Барду (кубовой остаток) после перегонки используют в качестве корма для сельскохозяйственных животных. Крахмал при его переработке сначала гидролизуют в сбраживаемые сахара. Производство этанола из мелассы с использованием жома [c.24]


    Различие между а- и -формами глюкозы заключается в относительном, расположении атома водорода и гидроксильной группы, находящихся у углеродного атома, отмеченного на структурной формуле звездочкой и обусловливающего восстановительные свойства глюкозы. В метилглюкозах вме сто этого гидроксила находится -метоксильная группа, причем а-глюко-зиды являются производными а-глюкозыАналогичное строение имеют и другие углеводы, обладающие восстановительными свойствами. Выше изображены структурные формулы некоторых из наиболее распространенных альдоз, а именно галактозы (XVIII), маннозы (XIX), ксилозы (XX) и арабинозы (XXI). Несомненно, что эти углеводы и их производные также могут существовать в а,- и -формах, что зкспери.ментально не было, однако, подтверждено для всех сахаров этого рода. [c.235]

    Дигидропираны как модели в химии углеводов. Дигидропираны представляют также интерес и для химиков, работающих в области углеводов. Если формулы дигидропирана и его производных написать в форме, принятой в химчи сахаров, то этим в большей степени подчеркивается связь между соединениями дигидропиранового ряда и углеводами. [c.274]

    На основе разработанной методики синтеза С-производные углеводов получаются в форме сполна ацетилированных сахаров. Это удобно для проведения дальнейших реакций по агликону. Вместе с тем представляет интерес выделение дезацетилированных производных. Дезацетилирование успешно осуществлено при действии на ацетилпроизводные аммиаком в абсолютном метаноле [64, 65], а также хлорной кислотой, взятой в каталитическом количестве. [c.143]

    Триозы встречаются в животном организме обычно в форме сложных эфиров фосфорной кислоты. Способность других углеводов образовывать сложные эфиры с фосфорной кислотой также является их важной особенностью фосфорные эфиры сахаров играют исключительнЬ большую роль в обмене веществ. Образование этих эфиров схематически можно представить следующим образом  [c.80]

    В нормальной моче концентрация глюкозы настолько низка (не более 0,02%), что этот углевод не может быть открыт с помощью обычных проб на редуцирующие соединения. Однако при глюкозурии содержание глюкозы в моче настолько резко повышается, что сахар легко открывается в ней при помощи ряда качественных реакций. В заметных количествах глюкоза появляется в моче при сильных психических эмоциях, особенно у нервных людей (стр. 260), а также после введения peros сразу большого количества глюкозы (например, 100—150 г за один прием). Эти формы глюкозурии быстро, однако, проходят после устранения вызвавших их причин и не представляют никакой опасности для человека. Признаком, указывающим на наличие заболевания, является стойкая глюкозурия, при которой концентрация глюкозы в моче может доходить до 5—8%, а иногда и выше. В таких случаях человек теряет через почки на протяжении суток до 200—ЗСО г и более сахара (подробнее о нарушении углеводного обмена см. стр. 286). Помимо глюкозы, с мочой из организма иногда выводятся н другие сахара фруктоза, лактоза, арабиноза. [c.502]

    Рассмотрим на молекулярном уровне, что же определяет способность полимеров поглощать воду. В общем виде молекулы близкого химического строения взаимно притягиваются и поэтому легко смешиваются или образуют раствор, тогда как молекулы резко отличного химического строения как бы избегают взаимного соседства и стремятся выделиться в отдельные фазы. Хорошим примером может служить система бензол СеНе — низкомолекулярные углеводороды ряда СпНгп+г- Химически эти соединения родственны друг другу и поэтому взаимно растворимы в любых соотношениях. С другой стороны, вода Н—О—Н по химическому строению сильно отличается от указанных углеводородов, и поэтому если воду энергично встряхивать с бензином или бензолом, то смешения не происходит, а вода выделяется в отдельную фазу на дне сосуда. Или, например, сахара химически подобны воде они содержат атомы водорода и кислорода в той же пропорции, что и вода (по этой причине их называют углеводами) сахара хорошо растворимы в воде. По этой же причине и целлюлоза СеНюОб, представляющая собой углевод, содержащий три ОН-группы на один глюкозидный остаток (рис. 8.9), обладает большим сродством к воде, однако она не растворяется в воде по причине своей полимерной природы и высокой кристалличности. Как уже упоминалось выше, взаимодействие между целлюлозой и водой принимает форму водородных связей , образующихся между ОН-группами их молекул (см. стр. 157). Доказательством такого сильного взаимодействия может служить также большая теплота смачивания целлюлозы. [c.205]

    Истинные гидроксильные группы углеводов можно алкилировать смесью диметилсульфата и едкого натра или иодистым метилом и окисью серебра. Если в качестве исходных материалов для получения эфиров сахара используют чистые а- или р-гликозиды, продукты реакции также являются чистыми аномерами. В противном случае будут получены смеси двух форм. Так, Уэст и Холден [50] утверждают, что метил-2,3,4,6-тетра-О-глюкопи-ранозид можно получить путем действия на а-метилглюкозид диметилсуль-фатом и едким натром, применяя только /б количества реактива, необходимого для метилирования Р-глюкозы. Для алкилирования небольших проб можно воспользоваться более простой методикой, но, чтобы все гидроксильные группы прореагировали, обычно приходится последовательно добавлять реактивы. Чаш,е всего для алкилирования применяют смесь диметилсульфата с 30% едкого натра, поскольку эти реактивы являются дешевыми и в их смеси растворяются простые сахара и гликозиды. В условиях реакции ацетильные группы замещаются метильными группами. Следовательно, ацетилированные углеводы, так же как и свободные сахара и гликозиды, будут реагировать. В результате частичного метилирования сахара становятся нерастворимыми в водных средах и скорость реакции соответственно медленно падает. С этим частично можно бороться, продолжая реакцию в таких органических растворителях, как тетрагидрофуран, и применяя в качестве реактивов иодистый метил и окись серебра (метод Пурди). Кун и др. [32] описали усовершенствованный метод переметилирования сахарозы реактивами Пурди при использовании диметилформамида в качестве растворителя. В этом растворителе углеводы довольно хорошо растворяются, и поэтому за одну стадию метилирования можно получить продукт, инфракрасный спектр которого не обнаруживает полос поглощения гидроксильных групп. Редуцирующие сахара переводятся этим реактивом перед обработкой в гликозиды вследствие окислительной способности окиси серебра. [c.552]

    ГЛЮКОЗА eHijOs, мол. в. 180,16— моносахарид, одна из восьми изомерных альдогексоз. Г. в виде D-формы (декстроза, виноградный сахар) является самым распространенным углеводом. D-Г. (обычно ее называют просто Г.) встречается в свободном виде и в виде олигосахаридов (тростниковый сахар, молочный сахар), полисахаридов (крах.нал, гликоген, целлюлоза, декстран), гликозидов и др. производных. В свободно виде D-Г. содержится в плодах, цветах и др. органах растений, а также в животных тканях (в крови, мозгу и др.). D-r. является важнейшим источником энергии в организме животных и микроорганизмов (см. Гликолиз). Как и др. моносахариды, D-Г. образует носк. форм. Кристаллич. D-Г. получена в двух формах a-D-Г. (I) и -D-Г. (II). a-D-Г., т. пл. 146°, fa д = -М 12,2° (в воде), кристаллизуется из воды в виде моногидрата с т. пл. 83°. -D-Г. получают кристаллизацией D-Г. из пиридина и нек-рых др. растворителей,т.пл. 148—150°, [ад]=- -18,9° (в воде), В вод- [c.489]

    Хроматография на мелкодисперсной смоле в Са2+-фор.ме-прп элюировании водой находит также применение для быстрого разделения гомологичных олигосахаридов с СП до 6 или 7, т. е. содержащих до 6 или 7 углеводных остатков. Метод, рекомендуемый в качестве стандартного для анализа сбраживаемых сахаров (о-глюкозы, мальтозы и мальтотриозы) в пивном сусле-[10], позволяет разделить смесь о-глюкозы и мальтодекстринов, с СП до б за 20 мин [49]. Отличительной особенностью этого метода является использование колонки (300X7 мм), заполненной смолой аминекс 50 -Х4 (20—30 мкм) в Са +-форме при температуре 80 °С (применяется электрический нагревательный блок) углеводы элюируют-водой со 0,6 мл/мин. На [c.17]

    Несколько прекрасных обзоров, посвященных этому методу и его применению для разделения углеводов, опубликовано в конце 60-х — начале 70-х годов [46, 58, 59]. В распределительной хроматографии существенную роль играют несколько факторов. Наиболее важным представляется характер распределения полярных молекул углеводов между подвижной фазой и смолой, где содержание воды больше, однако взаимодействия этих молекул с противоионами смолы и собственно матрицей также в значительной степени влияют на результат разделения. Все это обусловливает сложность механизма хроматографии и как следствие в некоторой степени непредсказуемость значений времен удерживания для различных сахаров. Как правило, значения коэффициентов распределения увеличиваются с ростом, числа гидроксильных групп в сахарах, однако в некоторых случаях наблюдаются исключения при хроматографии на анионообменной смоле в сульфатной форме о-талоза элюируется в-887о-ном этаноле раньше о-ксилозы [57]. При замене противоиона смолы нередко также происходит обращение порядка элюирования [56]. Значения коэффициентов распределения увеличиваются с ростом концентрации этанола и уменьшаются с повышением температуры, однако изменение перечисленных параметров обычно не сказывается на порядке элюирования сахаров с одной и той же смолы. [c.19]

    Ионообменную хроматографию на колонках со смолами в боратной форме применяли для разделения и анализа не только сахаров, но и полиолов [84, 85]. Для этой цели использовали такую же хроматографическую систему [85], как и в случае разделения сахаров [78], но хроматографию проводили при более высокой температуре колонки (75 °С) и при большей скорости подачи буферов (70 мл/ч). Это обеспечивало разделение смеси, содержащей этиленгликоль, пять полиолов и два аминодезокси-полиола, за 4 ч [78]. С помощью анионообменной хроматографии в боратных буферах был успешно разделен ряд производных углеводов, в том числе несколько метилгликозидов [80], а также метиловые эфиры п-ксилозы, о-глюкозы и о-маннозы [c.23]

    Исследования советских ученых А. И. Опарина и А. Л. Курсанова показали, что через фосфорнокислые эфиры гексоз (фруктоза, глюкоза, манноза, галактоза) легко осуществляются взаимные превращения этих моносахаридов, а также превращение их в полиозы. Первым нефосфорилированным сахаром является дисахарид сахароза. Образование в первые минуты фотосинтеза преимущественно свободных углеводов в форме сахарозы было установлено у большинства растений с различными типами углеводного обмена. [c.356]


Смотреть страницы где упоминается термин Сахара также Углеводы а и формы: [c.26]    [c.103]    [c.467]    [c.70]    [c.9]    [c.25]    [c.363]    [c.38]    [c.395]    [c.214]    [c.190]   
Органическая химия. Т.2 (1970) -- [ c.524 ]




ПОИСК





Смотрите так же термины и статьи:

Аль-формы сахаров

также Сахара



© 2025 chem21.info Реклама на сайте