Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение ионов в растворе

    Электрическое поле, создаваемое зарядом металла в окружающем его растворе, вызывает неравномерное распределение ионов в растворе вблизи металла. Если металл заряжен отрицательно (рис. 146), то катионы, находящиеся в растворе вблизи него, притягиваясь металлом, концентрируются около него, в особенности в слое, непосредственно прилегающем к поверхности металла. Анионы же отталкиваются металлом, и их концентрация в растворе вблизи металла будет понижена, в особенности в слое, непосредственно прилегающем к поверхности металла. В результате раствор вблизи металла приобретает заряд, противоположный по знаку заряду металла. Образуется двойной электрический слой. Этот слой характеризуется различным распределением ионов разного знака в поверхностном слое раствора и неодинаковым распределением зарядов в поверхностном слое металла. Он связан с определенной разностью потенциалов (скачком потенциала) на поверхности раздела металл/раствор .  [c.416]


    Распределение ионов в растворе по Аррениусу и по Гхошу [c.82]

    В теории электролитической диссоциации Аррениуса предполагалось, что ионы в растворах находятся в состоянии беспорядочного движения (подобно газообразному состоянию). Это позволило применить законы, характеризующие газообразное состояние к электролитам. Однако в предположении о беспорядочном распределении ионов в растворе не учитывалось электростатическое взаимодействие между ионами, которое проявляется на достаточно больших расстояниях. В сильных электролитах, например, действие между ионами настолько велико, что в концентрированных растворах возникает тенденция к упорядоченному распределению, аналогичному ионным кристаллам (где каждый ион окружен ионами противоположного знака). Дальнейшие исследования показали, что в реальных растворах средней концентрации распределение ионов в электролите является промежуточным между беспорядочным и полностью упорядоченным. Электростатические силы стремятся создать такое распределение, при котором каждый ион окружен исключительно ионами противоположного знака, но этому противодействует хаотическое движение ионов, приводящее к беспорядочному распределению. В конечном итоге, около каждого иона образуется ионная атмосфера, в которой преобладают ионы противоположного (по сравнению с центральным ионом) знака. [c.60]

    Важная группа электрических явлений связана с распределением ионов в растворе в присутствии электрического поля. Начнем с рассмотрения плоской поверхности, несущей однородно распределенный заряд и находящейся в контакте с раствором, который содержит положительные и отрицательные ионы. Предположим, что поверхность заряжена положительно. Электрический потенциал на поверхности примем равным 11)0. По мере продвижения в глубь раствора потенциал уменьшается. Необходимо найти закон изменения потенциала с расстоянием от поверхности. В любой точке раствора потенциал определяет потенциальную энергию гег]) иона в электрическом поле, где 2 — валентность иона и е — заряд электрона. Вероятность нахождения иона в некоторой точке пропорциональна множителю Больцмана Аналогичная ситуация наблюдается в том случае, когда молекулы газа находятся в поле сил тяжести, в котором потенциальная энергия молекулы равна mgh. Изменение концентрации с высотой определяется известным выражением [c.162]


    Однако представления о беспорядочном распределении ионов в растворе не соответствуют действительности, так как они основаны на игнорировании электростатического взаимодействия между ионами. Электрические силы проявляются на относительно больших расстояниях, и в сильных электролитах, где диссоциация велика, а концентрация ионов значительна и расстояния между ними невелики, электростатическое взаимодействие между ионами настолько сильно, что не может не сказываться на характере их распределения. Возникает тенденция к упорядоченному распределению, аналогичному распределению ионов в ионных кристаллах, где каждый ион окружен ионами противоположного знака. [c.393]

    Рассмотрим статистическое распределение ионов в растворе с диэлектрической проницаемостью D вокруг какого-либо одного иона, который избран в качестве центрального. Пусть это будет катион с зарядом е. Вокруг этого иона имеется электрическое поле с шаровой симметрией. Потенциал поля в каждой точке есть функция расстояния г точки от центрального иона. [c.404]

    РАСПРЕДЕЛЕНИЕ ИОНОВ В РАСТВОРЕ ЭЛЕКТРОЛИТА И ПОТЕНЦИАЛ ИОННОЙ АТМОСФЕРЫ [c.33]

    Чтобы описать ион — ионное взаимодействие, необходимо знать распределение ионов в растворе и природу сил, действующих между ионами. Поскольку и ионы, и диполи растворителя находятся в ха- [c.33]

    II 1.2. Распределение ионов в растворе электролита и потенциал ионной атмосферы [c.39]

    Чтобы описать ион-ионное взаимодействие, необходимо знать распределение ионов в растворе и природу сил, действующих между нонами. Поскольку и ионы, и диполи растворителя находятся в хаотическом движении, а ионы могут образовывать ассоциаты, комплексы и недиссоциированные молекулы, то в общем виде задача о распределении ионов оказывается чрезвычайно сложной. Можно предположить, что электролит полностью диссоциирован (а=1), растворитель представляет собой непрерывную среду с диэлектрической постоянной е, а ионы взаимодействуют в нем только по закону Кулона. В этих условиях вопрос о распределении и взаимодействии ионов в растворах электролитов был решен П. Дебаем и Э. Гюккелем (1923). [c.39]

    Возможность образования ионной атмосферы вытекает из статистической теории электролитов. Распределение ионов в растворе следует рассматривать как промежуточное между беспорядочным распределением молекул в жидкости и упорядоченным распределением частиц в кристаллической решетке. Ионы в растворе в каждый данный момент времени распределены не хаотически, а в некоторой степени упорядоченно благодаря кулоновскому притяжению зарядов противоположного знака. В каждый момент времени вокруг любого из ионов формируется оболочка из ионов противоположного заряда — ионная атмосфера (рис. 6.1,а). [c.286]

    Согласно этой теории, распределение ионов в растворе около поверхности твердой фазы определяется двумя действующими в противоположном направлении факторами. С одной стороны, молекулярное тепловое движение стремится распределить ионы в каждом элементе объема раствора равномерно. С другой стороны, электростатические силы, действующие со стороны заряженной поверхности твердой фазы, препятствуют равномерному распределению ионов противоположного знака (противоионов) в растворе близ границы раздела фаз. В результате противоионы, образующие наружную обкладку двойного электрического слоя, не лежат в какой-то одной плоскости концентрация противоионов, наибольшая около заряженной поверхности твердой фазы, убывает по мере увеличения расстояния от границы раздела фаз по направлению внутрь раствора. [c.323]

    Из уравнения (Х,25), кроме того, следует, что значения пр отвечают такому распределению ионов в растворе, что концентрация Со линейно падает до нуля вблизи вращающегося электрода. Это падение происходит внутри слоя, имеющего толщину [c.280]

    Однако картина распределения ионов в растворе более сложна, чем в описанном ранее случае. Часть ионов, имеющих знак, обратный потенциалопределяющим ионам (противоионы), образует, благодаря тепловому движению около твердой поверхности ядра, диффузную ионную атмосферу. В результате часть противоионов удаляется от твердой поверхности на расстояние, превыщающее молекулярное (рис. 122,6). Такая структура двойного слоя (с изменяющейся толщиной от 1 до 10 мкм) была предложена Гуи. Здесь изменение термодинамического потенциала происходит по более сложному закону. [c.320]

    В теории Дебая — Хюккеля принимается, что электролиты в растворе диссоциированы нацело и распределение ионов в растворе подчиняется некоторым правильностям, предусматривающим чередование положительных и отрицательных ионов. Правильности в распределении ионов являются результатом свободного движения ионов и наличия у них зарядов. Электростатическое взаимодействие противоположно заряженных ионов приводит к тому, что вокруг положительно заряженных ионов вероятность нахождения отрицательно заряженных будет больше, а вокруг отрицательных ионов больше будет вероятность нахождения положительных. При этом раствор в целом остается электронейтральным. [c.139]


    Аррениус предполагал, что распределение ионов в растворе остается хаотичным, как в смесях идеальных газов, допускал, что основные свойства растворов меняются пропорционально числу ионов (или общему числу частиц растворенного вещества). Например, электропроводность раствора, согласно Аррениусу, пропорциональна числу ионов и может служить мерой степени диссоциации. Однако при значительных концентрациях ионов в растворе скорость движения ионов в электрическом поле при данном градиенте потенциала уменьшается с ростом концентрации вследствие взаимодействия с ионами противоположных знаков, поэтому электропроводность не может служить мерой степени диссоциации. Опыт показал далее, что константы диссоциации резко изменяются с концентрацией, т. е. не являются константами. Степень диссоциации, вычисленная из электропроводности, существенно отличается от найденной для концентрированных электролитов по изотоническому коэффициенту. Имеются и другие факты, указывающие на то, что степень диссоциации сильных электролитов значительно выше вычисленной по Аррениусу. Так, каталитическое действие ионов Н3О+ в сильных электролитах изменяется пропорционально общей концентрации растворенного вещества, что указывает на независимость степени диссоциации от концентрации. [c.61]

    Ири ностроении теории сделан ряд допущений пе учитьшается дискретность распределения ионов в растворе, не учитывается взаимодействие ионов с молекулами растворителя, ионы рассматриваются как точечные заряды. В силу сделанных нри выводе теории допущений опа применима лишь для весьма разбавленных растворов сильных электролитов, до концентрации не выше 1 моль/м . Попытки усовершенствовать теорию, учитывая размеры ионов, лишь незначительно изменяют пределы ее применимости. [c.16]

    Так как в растворе не один, а много ионов, и они взаимодействуют, то это отражается и на распределении ионов в растворе, и на их термодинамических характеристиках. [c.225]

    При рассмотрении ионного раствора следует обратить внимание на два фактора, имеющих существенное значение. Первым из них является распределение ионов в растворе по отношению друг к другу, а вторым—действующие на ионы силы, обусловленные как наличием самих ионов, так и наложенными извне полями. Эти факторы не являются взаимно независимыми, так как силы влияют па распределение ионов, а распределение ионов в свою очередь определяет силы. Первым шагом в построении теории будет определение функций распределения, которые должны быть применимы к ионным растворам в общем случае, независимо от того, находятся ли эти растворы в равновесном или возмущенном состоянии, причем наличие последнего обусловлено действием внешних возмущающих факторов, как, например, наложенных извне электрических полей или движения всего раствора в целом. [c.34]

    Действие больших органических ионов (коллоидных электролитов) на гидрофобные коллоиды должно быть отличным от действия простых ионов. Поверхностная активность больших органических ионов может исключительно резко влиять на распределение ионов в растворе и, следовательно, и на устойчивость коллоидов. Поскольку эти ионы сильно концентрируются на поверхности, то коллоидные частицы будут разряжаться ими при очень низких равновесных концентрациях электролита. Кроме того, ориентированная адсорбция длинноцепочечных ионов на поверхности раздела твердое тело — жидкость, при которой неполярные углеводородные цепи направлены в жидкую среду, приводит не только к потере коллоидными частицами электрического заряда, но и к изменению природы их поверхности за счет ее гидрофобизации, что усиливает склонность золя к коагуляции. Это можно легко установить путем извлечения полученного таким образом коагулята из водной фазы бензолом. [c.261]

    По существу, кинетическая теория диффузии электролитов рассматривает следствия электрического взаимодействия между зарядами ионов. Электрическое притяжение и отталкивание ионов оказывает некоторое упорядочивающее влияние, действуя против нарушающего порядок теплового движения. Электрическое взаимодействие изменяет статистическое распределение ионов в растворе. Это действие описано в теории Дебая — Хюккеля и развито далее в работах Онзагера, Бьеррума и других, что позволило лучше интерпретировать экспериментальные данные (см. разд. 4.2.3 и 5.1). [c.225]

    Взаимодействие между ионами исчерпывается кулоновскими силами. Наложение электростатических сил на силы теплового движения приводит к такому распределению ионов в растворе, для которого характерна статистическая шаровая ионная атмосфера. Это допущение также справедливо лишь для разбавленных растворов. При повышении концентрации среднее расстояние между ионами уменьшается и наряду с электростатическими силами появляются другие силы, действующие на более близком расстоянии, в первую очередь силы Ван-дер-Ваальса. Понятие об ионной атмосфере в этом случае также должно быть изменено, поскольку появляется необходимость учета не только взаимодействия между данным ионом и его окружением, но и между двумя соседними ионами. Размеры ионной атмосферы при увеличении концентрации и зарядов ионов, как это видно из табл. 8, становятся сравнимыми с собственными размерами ионов, что не согласуется с понятием ионной атмосферы. [c.53]

    Если центральный ион, расположенный в начале координат, заряжен положительно, то элемент объема будет обладать избыточным отрицательным зарядом. Предполагая, что к распределению ионов в растворе применим принцип Больцмана и что силы, действующие между ионами, по своей природе электростатические, число отрицательных ионов в элементарном объеме йУ можно выразить как [c.45]

    Пусть г(3г(г) есть потенциал раствора на расстоянии г от центрального иона г, обладающего зарядом ге, где е — единица атомного заряда (4,80 X X 10 ЭЛ. ст.ед.), 2г—целое число. Предполагается, что г1 г(/-) обладает сферической симметрией. В таком случае о1 г(7-) можно разделить на две составляющие, из которых одна — поле кулоновского взаимодействия, образованное центральным ионом, и вторая — некоторая дополнительная величина 113а. ( ), обусловленная распределением ионов в растворе вокруг центрального иона г. Потенциалы фа.( ) и г з1(т ) должны удовлетворять уравнению Пуассона в любой точке г раствора, р=5(/-) —плотность заряда в точке г. Для сферически симметричного потенциала это выражение может быть записано в виде [c.447]

    В теории электролитов очень важным является вопрос о распределении ионов в растворе. По первоначальной теории электролитической диссоциации, основанной на физической теории растворов Вант-Гоффа, считалось, что ионы в растворвх находятся в состоянии беспорядочного движения, следовательно в состоянии, аналогичном газообразному. Этим обстоятельством объяснялась возможность применения законов для газообразного состояния к электролитам. [c.393]

    Особенности поведения растворов сильных электролитов и их свойства объясняются теорией межионного взаимодействия, которая была развита Дебаем и Гюккелем (1923). Согласно этой теории, противоположно заряженные ионы в растворе притягиваются друг, к другу. Электростатическое взаимодействие ме.жду. ионами стремится создать такое " их расположение в растворе, при котором отрицательные ионы окружают себя атмосферой положительных ионов, и наоборот. В результате некоторой упорядоченности распределения ионов в растворе около любого иона концентрируются ионы противоположного знака. Суммарный заряд сферы, в центре которой находится произвольно выбранный ион, имеет избыточный заряд, противоположный по знаку заряда центрального иона. Тепловое движение постоянно изменяет картину распределения ионов в этой сфере. В нее входят и ее покидают ионы различных знаков, вследствие чего относительное число катионов и анионов в сфере постоянно изменяется. Поскольку радиус ионной атмосферы довольно велик, атмосферы двух соседних ионов пересекаются. В этом случае каждый ион в данный момент входит в состав одной илн нескольких ионных атмосфер других ионов. Исходя из нред-сгавлений о полной диссоциации сильных электролитов следовало ожидать, что коэффициент I для электролита, диссоциирующего на два иона, должен равняться двум не только в разбавленных, но и в достаточно концентрированных растворах. Опыты показали, однако, чго коэффициент / в растворах сильных электролитов, так же как и в растворах слабых,- зависит от концентрации раствора, уменьшаясь с увеличением концентрации. Такая зависи- [c.239]

    Какой физической картине соответствует распределение ионов в растворе согласно модели Аррениуса, Гхоша, Дебая— Гюккеля  [c.194]

    Такие реакции Различие энтальпии продуктов и реагентов не может увеличивают быть единственным фактором, определяющим воз- беспорядок системы можность протекания реакции. В этом случае необходимы дополнительные факторы. Приведенные выще четыре примера физических и химических превращений имеют одно общее свойство. Растворение хлорида калия сопровождается наруще-нием регулярности кристаллической решетки — возникает беспорядочное распределение ионов в растворе. При плавлении льда регулярная сетка водородных связей во льду (см. рис. 4.18) заменяется Примеры жидкими ассоциатами молекул воды в среде жидкой самопроизвольных воды. Когда вода испаряется, ассоциаты из ее моле-превращепий кул заменяются отдельными молекулами, движущимися независимо в газовой среде. (Большое различие между АНпл и ЛЯисп указывает на то, что в жидкой фазе существуют сильные водородные связи). При диссоциации карбоната аммония из 1 моль его образуется 4 моль газообразных продуктов. Когда газы приходят в соприкосновение, они взаимодиффундируют, образуя гомогенную смесь. Систему, состоящую из различных молекул в разных сосудах, следует считать более упорядоченной, чем смесь разных молекул в одном сосуде. [c.231]

    Коэффициент активности электролита существенно зависит от концентрации. В разбавленных растворах взаимодействие между ионами представляет собой простое кулоновское притяжение или отталкивание это взаимодействие является значительно более дальнодействую-щим, чем другие межмолекулярные взаимодействия. При бесконечном разбавлении распределение ионов в растворе электролита можно рассматривать как совершенно случайное, поскольку расстояния между ионами становятся слишком большими, чтобы они могли притягиваться друг к другу, и коэффициент активности в этом случае равен единице. Однако при более высоких концентрациях, когда расстояния между ионами уменьшаются, силы кулоновского притяжения и отталкивания начинают играть значительную роль. Вследствие этого взаимодействия концентрация положительных ионов вблизи отрицательного и соответственно концентрация отрицательных ионов вблизи положительного несколько повышаются по сравнению со средней концентрацией е растворе. Притяжение между ионом и окружающей его ионной атмосферой приводит к уменьшению коэффициента активности электролита. Этот эффект заметнее в случае многовалентных ионов и для растворителей с меньшей диэлектрической постоянной, в которых электростатические взаимодействия проявляются сильнее. [c.191]

    Первую попытку статистического расчета распределения ионов в растворе при учете электростатичес.кого взаимодействия и теплового движения предприня.г С. Мнлыгер в 9i2 г. Исполь.эованные им математические приемы были очень сложны. [c.190]


Смотреть страницы где упоминается термин Распределение ионов в растворе: [c.301]    [c.12]    [c.232]    [c.199]    [c.12]    [c.149]    [c.411]    [c.194]    [c.28]    [c.212]    [c.12]    [c.44]    [c.47]   
Курс теоретической электрохимии (1951) -- [ c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Распределение на ионитах

Раствор ионный



© 2025 chem21.info Реклама на сайте