Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивность металлов определение по измерению

    При потенциостатических измерениях изучают зависимость тока от времени при постоянном потенциале электрода, поддерживаемом при помощи потенциостата. В определенной области потенциалов ток анодного растворения металла по прошествии некоторого промежутка времени резко падает, что свидетельствует о наступлении пассивного состояния. При помощи потенциостатического метода измеряют также зависимость тока от потенциала электрода. Типичная поляризационная кривая при пассивации металла приведена на рис. 191. На этой кривой можно выделить область увеличения тока с ростом анодного потенциала (I) (активная область) область перехода от активного состояния к пассивному (II) область пассивации (III), в которой ток растворения металла мал и часто практически не зависит от потенциала, и, наконец, область анодного выделения кислорода (IV). Если раньше анодного выделения кислорода наступает вновь растворение металла, то область IV называется областью перепассивации или транс-пассивности. Механизмы растворения металла в активной области [c.380]


    При исследовании коррозионного поведения металлов и сплавов в жидких средах часто возникает задача определения в растворе весьма малых количеств продуктов растворения. С такой задачей исследователь сталкивается, например, при измерении скоростей растворения коррозионно-стойких металлов и сплавов, особенно при потенциалах пассивной области или при очень отрицательных потенциалах, при исследовании кинетики начальных стадий растворения, при оценке коррозионной стойкости анодов из благородных металлов в различных условиях электролиза, при определении скорости растворения микропримесей и в ряде других случаев. Чувствительность обычных, традиционных методов, используемых при таких коррозионных испытаниях, как определение весовых потерь или колориметрическое определение продуктов коррозии в растворе, часто недостаточна для проведения соответствующих измерений. В этих случаях весьма эффективным может оказаться применение радиохимического метода, сущность которого состоит в следующем. В исследуемый образец вводятся радиоизотопы составляющих его элементов. Затем образец подвергается коррозионному испытанию, [c.93]

    При потенциостатических измерениях изучают зависимость тока от времени при постоянном потенциале электрода, поддерживаемом при помощи потенциостата. В определенной области потенциалов ток анодного растворения металла по прошествии некоторого промежутка времени резко падает, что свидетельствует о наступлении пассивного [c.365]

    Поляризационные кривые позволяют изучить кинетику электродных процессов, величину зашитного тока при электрохимической зашите, явление пассивности и др. Существует два способа снятия поляризационных кривых гальваностатический и потенциостатический. Гальваностатический метод заключается в измерении стационарного потенциала металла при пропускании через него тока определенной плотности. По ряду значений потенциалов при соответствующих плотностях поляризующего тока строят кривые катодной или анодной поляризации, т. е. зависимости Е = 1 ) или Е = /(/ ). [c.342]

    В связи с проблемой коррозии пассивность металлов изучали Г. В. Акимов и его сотрудники. Особое внимание в этих работах уделялось вопросам строения толстых окисных пленок, например, определению пористости пленок на железе, алюминии и т. д. Методом измерения потенциала во время механической зачистки поверхности металлов под раствором была исследована зависимость пассивирующего действия пленок от положения металла в периодической системе Менделеева [У". В. Акимов, Теория и методы исследования коррозии металлов, Изд. АН СССР, М.—Л., 1946]. В последние годы по теории пассивности опубликован ряд работ советских ученых. Наконец, в связи с проблемой пассивности следует упомянуть о работах В. И. Веселовского, посвященных фотоэлектрохимическим явлениям, заключающимся в снижении перенапряжения электрохимической реакции под действием света. В. И. Веселовский дал теорию сенсибилиза-ционного действия пассивирующих слоев при фотоэлектрохимических процессах [В. И. Веселовский, ЖФХ, 15, 144 (1941) 22, 1302, 1427 (1948) 24, 366 (1950)]. (Прим. ред.) [c.654]


    Построение кривых потенциал — время для определения степени пассивности металлов было применено к довольно большому числу металлов и сред, что послужило поводо.м для некоторых исследователей считать это надежным способом исследования коррозионного процесса. Однако другие исследователи ставят под сомнение ценность способа для указанной цели, потому что часто наблюдается коррозия тогда, когда кривые потенциал — время указывают на пассивность. Возможно, что это видимое расхождение является следствием измерения потенциала йсего электрода, в то время как наблюдавшееся разъедание было сосредоточено на относительно небольшой площади. Если предвидится точечный характер коррозии, то измерение кривых потенциал — время должно производиться на большом числе малых площадей, а не на всей поверхности. [c.1030]

    Простые системы — все признаки при распознавании однотипны (например, масса). Сложные системы — в качестве признаков могут использоваться различные физические и химические свойства, результаты прямых и косвенных измерений. Сложные системы наиболее типичны для прикладных исследований в каталитических процессах. Например, в [2] для решения задачи прогнозирования многокомпонентных катализаторов использовались экспериментальные данные пассивных опытов по определению селективности на основе смеси УзО, и М0О3 (в реакции парофазного контактного окисления 2,6-диметилииридина). В качестве признаков были выбраны 20 разнотипных характеристик. В их число вошли отношение радиуса атома металла к радиусу атома кислорода в твердом оксиде, плотность оксида, цветность оксида по трехбальной шкале, отношение кристаллических пустот к собственному объему молекулы оксида в кристаллической структуре, зонный фактор (расчетная величина), мольная магнитная восприимчивость твердого оксида и т. п. Сложные системы в зависимости от способа получения информации можно подразделять на одноуровневые и многоуровневые. [c.80]

    Часто каталитические свойства зависят от способности металла или сплава хемосорбировать определенные компоненты из окружающей среды. Поэтому неудивительно, что переходные металлы — хорошие катализаторы и что электронные конфигурации в сплавах, способствующие каталитической активности, подобны электронным конфигурациям, благоприятствующим пассивности. Например, когда палладий, который в металлическом состоянии имеет 0,6 вакансий -электронов на атом, катодно насыщается водородом, он теряет свою каталитическую эффективность для орто-параводородной конверсии 132]. Такое поведение объясняется заполнением -уровня электронами растворенного водорода, в результате чего хемосорбция водорода на металле прекращается. Аналогично каталитическая эффективность сплавов Pd—Au подобно каталитической эффективности Pd имеется до тех пор, пока в сплаве не будет достигнута критическая концентрация Au, равная 60% (ат.). При этом содержании золота и выше сплавы становятся плохими катализаторами. Золото — непереходный металл, отдает электроны незаполненным -связям палладия. Магнитные измерения подтверждают, что -связь становится заполненной как раз при критической концентрации золота. Аналогичность условий, влияющих на пассивность и каталитическую эффективность, подтверждает, что пассивные пленки на переходных металлах и их сплавах являются хемосорбиро-ванными. Вопросы пассивности обсуждены в литературе [331. [c.78]

    Метод измерения электродных потенциалов полезен для экспрессной оценки способности металлов восстанавливать пассивное состояние, например после механического воздействия на поверхность. Этим метрдом пользуются также при определении склонности сталей к межкристаллитной коррозии, при определении эффективности действия ингибиторов. [c.138]

    Измерение критического давления инициирования детонации. Существует несколько методов определения Рк ,с содержанием которых можно ознакомиться в работе [148]. Если в ранних исследованиях передача детонации от активного заряда к пассивному осуществлялась в основном через воздушный промежуток, то в последние годы широкое распространение получил экспериментальный метод определения основанный на использовании инертной преграды (металл, плексиглас и т. п.). Схема опыта представлена на рис. 88, а 1 — ВВ, 2 — преграда, 3 — активный заряд, 4 — линза, 5 — детонатор), а его графическая интерпретация — на рис. 88, б (О/ — ударная адиабата материала преграды, О// — ударная адиабата исследуемого ВВ, 1 2— изэптропа расширения преграды). При детонации активного заряда в преграду входит ударная волна, давление в которой определяется, если известна ударная адиабата ВВ и зависимость массовой скорости материала преграды от свойств активного заряда. После подхода волны к границе преграда — исследуемое ВВ обратно по преграде распространяется волна разгрузки, а по ВВ — ударная волна. [c.185]


    Исходя из адсорбционной теории пассивности, представляется возможным объяснить и установленные нами закономерности. Потенциал нержавеющей стали (1Х18Н9Т) в хлористом аммонии (0,5%), как это видно из рис. 171, имеет более отрицательные значения, чем критический потенциал питтингообразования, и поэтому вероятность появления питтинговой коррозии равна нулю. С введением в электролит окислителя и увеличением его концентрации потенциал стали все более смещается в положительную сторону (рис. 171, кривая /), что облегчает, с одной стороны, адсорбцию отрицательно заряженных ионов хлора и, с другой стороны, делает их более активными. Все это увеличивает и число возникающих питтингов (см. рис. 161, кривую 1). Начиная с определенной концентрации окислителя, потенциал стали перестает смещаться в положительную сторону, что не должно увеличивать адсорбцию хлор-ионов, а стало быть, и число зарождающихся питтингов. Более того, увеличение соотношения концентраций пассиватора к активатору, как показали адсорбционные измерения с помощью меченых атомов (С1 ), описанные выше, препятствует адсорбции хлор-ионов, что должно уменьшать число питтингов, зарождающихся на поверхности металла (см. нисходящую ветвь кривой 1 на рис. 161). [c.333]

    Существует еще один экспериментальный факт, говорящий в пользу концепции пассивности, обусловленной фазовым окислом. Г. В. Акимов [40] измерял потенциалы ряда металлов в нескольких растворах. Измерения производились как при непрерывной зачистке поверхности металла, погруженного в электролит, карборундовым диском, так и без обработки. Предполагается, что стационарные потенциалы многих металлов имеют определенную величину, связанную с наличием на поверхности электродов сплошной или пористой окисной пленки. Постоянное удаление пленки шлифовкой должно сдвигать потенциалы в отрицательную сторону. Это предположение подтвердилось, что видно из табл. VI,5 [15], где металлы расположены в порядке уменьшения изменения потенциалов в каждой из сред. Отсутствие изменений (нуль) относится к случаям, когда потенциал действительно не менялся при зачистке или когда наблюдалось некоторое облагораживание его за счет улучшения аэрации. Величины Дф в известной степени совпадают с химической природой окислов. Так, в 0,1 н. NaOH у алюминия, цинка, олова и свинца, окислы которых амфотерны и не стабильны в щелочных растворах, Аф мало. Труднее объяснить поведение некоторых металлов в 0,1 н. НКОз. [c.227]

    Определение стационарных параметров по нестационарным кривым требует также совнадения измеряемых нестационарных токов со скоростью ионизации (окисления) металла. Из данных работы [222] следует, в частности, что при несоблюдении этих условий нестационарные измерения могут дать неправильные значения потенциала границы пассивной области фп (рис. V. 1) для нержавеющей стали. [c.153]

    Измерения импеданса, хотя и широко применяются в фундаментальных исследованиях анодного окисления, однако они имеют только ограниченное применение в исследованиях коррозии вследствие необходимости применять сложное электрическое оборудование, из-за наложения ограничений на конструкцию ячейки и самое главное вследствие сложности анализа результатов, полученных на корродирующем электроде. Тем не менее Армстронг [581 использовал измерение импеданса для изучения активно-пассивной области хрома, Зпелбойн [591 описал его использование для определения мгновенной скорости металла. В другой работе [59а1 был описан метод использования фарадеевского выпрямления для определения мгновенной скорости коррозии, в котором электрод сравнения не требуется схема состоит из электрода исследуемого металла и вспомогательного электрода с большой поверхностью того же самого металла. [c.554]

    В течение некоторого времени потенциостаты использовали в аналитической химии [1]. Хиклииг [2] первый описал прибор с механической регулировкой. Робертс [3) первый предложил прибор с электронной регулировкой. Робертс разработал также руководство по применению прибора и основные требования к ним. Измерение поляризационных кривых металлов с помощью устройства, задающего постоянный потенциал, вносит большой вклад в знание коррозионных процессов и природы пассивности. Кроме применения потенциостата для изучения различных механизмов коррозии и пассивности, его можно использовать при разработке новых сплавов. Так, он очень важен при ускоренных исследованиях коррозионной стойкости. Растворение в условиях контролируемого потенциала может также применяться как точный метод или при металлографическом травлении, или при изучении селективного растворения различных фаз. Это устройство может быть использовано для определения оптимальных условий анодной и катодной защиты. Две наиболее современные статьи указывают на ограниченность применения этого метода [5] и различие между потенциостатическими испытаниями и экспозицией в растворах химических веществ. [c.602]

    Если металлы переходной группы, например никель, имеющий 0,6 вакансии на атом в -уровне (по определению магнитным способом), сплавить с непереходным металлом, например с медью ( -электронные вакансии отсутствуют), электроны из меди перейдут в незаполненные -уровни никеля. Сплав сохраняет свойства переходного металла никеля до тех пор, пока -электронные вакансии не заполняются окончательно. Специальные тепловые и магнитные измерения на сплавах N1—Си показали, что энергетические -уровни заполняются примерно при содержании 60% (ат.), или 58% (по массе), а при более низких содержаниях меди остаются незаполненными. Поэтому можно ожидать, что эти сплавы при содержании ниже 60% (ат.) Си (>40% N1) пассивны и ведут себя подобно никелю. При более высоких содержаниях меди они, по-видимому, активны и поведение их более подобно поведению меди. Коррозионные и поляризационные исследования [28, 29], подтверждают что область составов, где проявляется пассивность, приблизительно соответствует пределам незаполненной -связи энергетических уровней, как показано на рис. 33—35. Скорость коррозии в 3%-ном растворе ЫаС1 при 80 °С имеет ми- [c.75]

    Пассивность ряда неблагородных металлов (хрома и нержавеющей стали) несомненно обязана присутствию на их поверхности очень тонкой пленки окисла или адсорбированного кислорода, хотя механизм пассивности, несмотря на большое число проведенных исследований, еще дебатируется Хатуел [171] показал, что поаче шлифовки при отсутствии воздуха (в атмосфере аргона) сплавы железа, содержащие 3— 25% хро-ма, имеют постоянный потенциал растворения при измерении такж в отсутствии воздуха. После соприкосновения с воздухом сплавы, содержащие по крайней мере 12% хрома, обнаруживают облагораживание поверхности с потенциальной характеристикой пассивного состояния. В этом с.пу-чае, следовательно, пассивация не является специфическим свойством богатых хромом сплавов, а объясняется окислением, которое начинается только при определенном содержании хрома. [c.76]


Смотреть страницы где упоминается термин Пассивность металлов определение по измерению: [c.165]    [c.27]    [c.183]    [c.553]    [c.76]   
Теоретическая электрохимия (1959) -- [ c.0 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы пассивность

Определение пассивности металлов

Пассивность

Пассивные металлы



© 2024 chem21.info Реклама на сайте