Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция газовая хроматография

    Метод адсорбции паров бензола из потока азота Методы низкотемпературной адсорбции газов с ис пользованием принципов газовой хроматографии. . Методика института катализа СО АН СССР. .  [c.4]

    Методы низкотемпературной адсорбции газов с использованием принципов газовой хроматографии [c.81]

    При сочетании динамических методов адсорбции с газовой хроматографией существенно повышается производительность установок. Это объясняется тем, что отпадает необходимость многократных контрольных взвешиваний образца до момента установления адсорбционного равновесия. Наибольшее распространение находит так называемый метод тепловой десорбции газов. Он заключается в следующем. В реактор с навеской катализатора, охлаждаемого в сосуде Дьюара жидким газом, подают смесь газа-носнтеля и адсорбера, из которой поглощается адсорбат. Уменьшение концентрации адсор- [c.81]


    Первый том Курса физической химии включает термодинамику и ее приложения. Главы, посвященные основам термодинамики, термодинамике растворов и химической термодинамике, написаны Я. И. Герасимовым раздел Гетерогенные равновесия — В. П. Древингом раздел Поверхностные явления и адсорбция и дополнение Газовая хроматография —А. В. Киселевым. [c.9]

    Следует подчеркнуть, что поскольку основными физико-химическими процессами в газовой хроматографии являются процессы адсорбции и десорбции (или растворения и испарения), слишком сильно адсорбирующие адсорбенты (или слишком хорошо растворяющие жидкости) оказываются непригодными, поскольку они значительно задерживают процессы десорбции. Необходимо, чтобы процессы десорбции происходили достаточно быстро, иначе соответствующий компонент не успеет пройти колонку за удобное для анализа время. В этом отношении задача га-зо-хроматографической колонки отличается от задачи противогаза (в противогазе необходимо как можно прочнее удержать компонент, отравляющий воздух, т. е. резко увеличить энергию его адсорбции, замедлить его десорбцию). [c.546]

    Применение газовой хроматографии к исследованию изотерм адсорбции и активностей растворов [c.588]

    Применение газовой хроматографии к растворам и адсорбции 58 ) [c.589]

    Для выделения н-алканов можно применять жидкие мембраны [5С5, газовую хроматографию [51], адсорбцию на угле [52], термодиффузионное разделение. [c.258]

    В последнее время все большее применение получает хроматографический метод анализа. Благодаря разработке быстро анализирующих автоматических приборов, способных отбирать и анализировать газ непосредственно из производственного иоток.ч, ) также вследствие высокой точности анализа и возможности опре деления большого числа компонентов, этот метод может быть успешно применен для оперативного автоматизированного управления процессом. Определение состава газов хроматографическим методом основано на адсорбции компонентов газа поверхностью адсорбентов. В качестве адсорбента можно применять активированный уголь, силикагель, алюмогель, так называемые молекуляр иые сита (газовая хроматография) и нелетучие жидкости, нанесенные на инертный носитель, например толченый кирпич, гравий (газо-жидкостная хроматография). [c.88]

    Исследование адсорбции паров органических растворителей на нефтяных пеках методом обращенной газовой хроматографии. 265 [c.9]

    ИССЛЕДОВАНИЕ АДСОРБЦИИ ПАРОВ ОРГАНИЧЕСКИХ РАСТВОРИТЕЛЕЙ НА НЕФТЯНЫХ ПЕКАХ МЕТОДОМ ОБРАЩЕННОЙ ГАЗОВОЙ ХРОМАТОГРАФИИ [c.265]


    Газовая хроматография используется для решения таких физикохимических задач, как определение коэффициентов распределения л активности, термодинамических функций распределения и адсорбции. Этот метод применяется также для определения удельной поверхности адсорбентов, катализаторов, наполнителей. [c.46]

    Так как процессы взаимодействия разделяемых веществ с твердой и жидкой неподвижными фазами имеют существенное различие, пособие разделено на две части в первой рассматриваются хроматографические процессы на твердой неподвижной фазе (адсорбция, ионный обмен), во второй — процессы на жидкой неподвижной фазе (распределение, ситовой анализ). Несколько шире, чем другие методы, рассматривается газовая хроматография как наиболее распространенный вариант хроматографии, для которого теория процесса разработана наиболее полно. [c.3]

    В гл. I рассматривался вариант газовой хроматографии, в основе которого лежит селективная адсорбция компонентов разделяемой смеси твердой неподвижной фазой — адсорбентом. В распределительной газовой хроматографии решающим фактором разделения является селективная абсорбция компонентов смеси неподвижной жидкой фазой — абсорбентом. Для локализации неподвижной >йид-кой фазы и придания ей достаточной поверхности ее наносят на зерна твердого носителя, которым заполняется колонка (насадоч-ная колонка), или же на внутренние стенки тонких капилляров (капиллярная колонка). [c.170]

    Существенным отличием распределительной газовой хроматографии от адсорбционной является то, что изотерма абсорбции линейна в более широком интервале концентраций, чем изотерма адсорбции. [c.171]

    В основе газовой хроматографии лежат процессы адсорбции или абсорбции и обратный им процесс десорбции. [c.15]

    В газовой хроматографии может иметь место любой из процессов сорбции адсорбция или абсорбция. [c.15]

    Разновидность хроматографии, в которой процесс протекает при сверхкритических условиях, вследствие чего газ-носитель ведет себя подобно жидкости, получила название флюидной хроматографии. По сравнению с газовой хроматографией низкого давления коэффициент распределения в этом случае определяется двумя факторами. Во-первых, как и в случае жидкостно-адсорбционной хроматографии, компоненты разделяемой смеси стремятся проходить в плотную фазу из-за сильного молекулярного взаимодействия в этой. фазе. Во-вторых, адсорбция веществ уменьшается по мере того, как подвижная фаза адсорбируется и конкурирует с молекулами анализируемого компонента за место на поверхности. Очевидно также, что на величину адсорбции оказывает влияние полярность критической фазы. [c.58]

    В основу определения физико-химических характеристик с помощью газовой хроматографии положена известная функциональная связь этих характеристик с параметрами хроматографического опыта величинами удерживания и шириной хроматографического пика. Первые представляют собой функцию коэффициента распределения или величины адсорбции, что позволяет определять коэффициенты активности, термодинамические функции адсорбции или растворения, структуру изучаемых соединений и другие характеристики газообразных, жидких и твердых веществ. [c.160]

    В настоящее время для исследования адсорбции газов и паров широко применяется метод газовой хроматографии, относящийся к динамическим методам. При изучении адсорбции этим методом определенное количество исследуемого газа вводят в слой адсорбента, через который после этого пропускают газ-носитель. Потоком газа-носителя исследуемый газ вытесняется из [c.47]

    Кроме того, метод газовой хроматографии дает возможность получать информацию теоретического характера, например определять коэффициенты и энтальпию адсорбции, исследовать поведение твердых катализаторов. [c.245]

    Газовая хроматография. Следовые количества газообразных компонентов пробы, находящихся в газовом потоке, разделяются в ходе адсорбции твердым носителем или распределяются между газообразной фазой и жидкой фазой, находящейся на твердом носителе. Этот метод связан с детектированием, поэтому его часто относят к методам определения (см. разд. 43.5). [c.421]

    Наибольшее распространение в неравновесной газовой хроматографии получили теория эквивалентных теоретических тарелок А. Дж. П. Мартина и диффузионно-массообменная теория Дж. Дж. Ван-Деемтера. Последнюю часто называют теорией эффективной диффузии. Обе теории основаны на допущении, что хроматографический процесс протекает в линейной области изотермы адсорбции (в ГАХ) или изотермы распределения (в ГЖХ). Количественной мерой размывания в первом случае является высота Я теоретической тарелки, во втором — эффективный коэффициент диффузии О фф. [c.47]


    Связь между формой изотермы адсорбции и выходной кривой легко понять, проанализировав основное уравнение газовой хроматографии (II.8), которое приближенно можно написать так  [c.99]

    Метод построения изотермы адсорбции на основе элюентной выходной кривой изучаемого вещества для жидкофазной хроматографии впервые предложил Глюкауф. Применительно к газовой хроматографии пригодность этого метода была впервые показана Д. А. Вяхиревым и Л. Е. Решетниковой. Дальнейшее развитие метод получил Б работах С. 3. Рогинского с сотр. и А. В. Киселева с сотр. Изотермы адсорбции, полученные на основе анализа элюентной кривой и классическим статическим весовым методом Мак-Бена, очень близки при соблюдении определенных условий опыта, в то же время хроматографические измерения значительно проще осуществимы, нежели статические. Используя выходную кривую фронтального варианта хроматографии одного вещества на выбранном адсорбенте как в жидкой, так и в газовой фазе, можно построить изотерму адсорбции данного вещества (Классом и др.). [c.250]

    Помимо широкого использования для аналитических и препаративных целей, газовая хроматография находит важное применение как метод быстрого и удобного исследования физико-химических свойств различных веществ и взаимодействия их между собой (определение коэффициентов активности, теплот адсорбции, теплот комплексообразования и др.). [c.233]

    Эффективность разделения газовых смесей посредством адсорбции (газовая хроматография) и течения сквозь пористые мембраны существенно зависит от размера пор используемых сорбентов и диафрагм. Как известно, по мере приближения размера пор к размеру сорбируемых молекул адсорбционный потенциал повыщается. Это явление можно использовать для увеличения эффективности разделения газовых смесей. Особенно значительных эффектов можно достигнуть в случае ультрапористости сорбента по отпощепию к одному из компонентов, когда его поры оказываются доступными лишь для меньших по размеру молекул другого компонента. [c.168]

    Динамический метод заключается в пропускании через слой адсорбента тока газа и в фиксировании появления газа (пара) за слоем адсорбента, так называемого проскока , а в более точных работах—в измерении нараст 1ния концентрации газа за слоем адсорбента после проскока. Динамический метод широко применяется при адсорбции сильно адсорбирующегося компонента из смеси с слабо адсорбирующимся газом— носителем и вообще при адсорбционном анализе смесей. Некоторые варианты этого метода будут рассмотрены ниже в связи с газовой хроматографией (см. Дополнение). [c.458]

    Кроме таких аналитических применений разделения компонентов смесей на основе различной их адсорбции или различ ной растворимости, газовая хроматография, очевидно, может быть применена и для решения обратной задачи, т. е. для быстрого определения адсорбции и теплоты адсорбции, величины по-. ерхности твердого тела и ее химических свойств или для опре-1еления термсдинамических свойств раствора в неподвижной жидкости и связанных с этими свойствами физико-химических величин (констант равновесия, изотерм распределения, коэффи циентов активности, тепловых эффектов и т. п.). [c.546]

    Для процесса химического взаимодействия такое явление не характерно. Сообщений о проведении аналогичной работы в присутствии других классов углеводородов не было, в связи с этим в ГрозНКИ [37] были проведены эксперименты по адсорбции на поверхности кристалла карбамида н-ажанов и других углеводородов. Изучение проводили методом газовой хроматографии, широко приме- [c.46]

    Рецензенты проф. А. А. Жуховицкий (Московский институт стали и сплавов) и лаборатория адсорбции и газовой хроматографии химфака МГУ (научный руководтель проф. А. В. Ки- [c.2]

    Автор пользуется случаем выразить глубокую признательность заслуженному деятелю науки и техники РСФСР, профессору, доктору химических (Наук Александру Абрамовичу Жухо-вицкому и профессору, доктору химических наук Андрею Владимировичу Киселеву, а также научным сотрудникам руководимой им проблемной лаборатории адсорбции и газовой хроматографии МГУ, взявшим на себя труд по рецензированию рукописи и внесшим ряд ценных замечаний и советов по улучшению содержания руководства. Автор также благодарит сотрудников кафедры физической химии Башкирского государственного университета кавдидатов химических наук Ф. X. Кудашеву и Л. М. Лапкина за ценные замечания при составлении пособия. [c.4]

    Вытеснительный способ отличается от фронтального и элюентного, тем, что после введения пробы исследуемой смеси колонку промывают растворителем или газом-носителем, к которым добавлены растворимое вещество или вещество в газообразном (парообразном) состоянии (соответственно в жидкофазной и в газовой хроматографии). Это вещество должно адсорбироваться сильнее любого из компонентов разделяемой смеси и называется вытеснителем, так как оно, обладая наибольшей адсорбируемостью, вытесняет более слабо адсорбиругощиеся компоненты. Благодаря эффекту адсорбционного вытеснения, открытому Цветом, происходит вытеснение компонентов из адсорбента в последовательности, соответствующей их адсорбируемости, и компоненты полностью разделяются при этом зоны компонентов движутся по слою адсорбента с одинаковой скоростью, соприкасаясь между собой, по направлению к выходу из колонки. К моменту полного насыщения адсорбента вытеснителем детектор запишет ступенчатую выходную кривую, отличающуюся от фронтальной кривой тем, что каждая ступень соответствует чистому компоненту. Высота ступени характеризует данный компонент с качественной стороны, а длина ступени пропорциональна количественному содержанию данного компонента в исследуемой смеси. Обязательным условием для хорошего разделения в противоположность элюентному способу является резко выраженная выпуклая форма изотерм адсорбции разделяемых компонентов и вытеснителя. А это условие выполнимо лишь в случае применения высокоактивных адсорбентов активированных углей березового ВАУ, каменноугольного антрацита АГ-2, норита и др. [c.17]

    История развития газовой хроматографии в известной степени есть история развития детектора. На первом этапе детектирование основывалось на химическом определении суммарного количества вещества (поглощение газа-носителя, титрование и т. д.). Применение детектора, работающего по принципу измерения теплопроводности (катарометра), создало известный переворот в газовой хроматографии. Катарометр обладает рядом недостатков. Невысокая чувствительность делает его мало пригодным для анализа примесей и микропримесей. Зависимость показаний катарометра от температуры, давления и скорости потока газа-носителя вносит погрешности в результаты анализа. В связи с этим предпринимались поиски новых физических принципов детектирования измерение плотности (газовые весы Мартина), теплот адсорбции, диэлектрической постоянной и др. Эти детекторы не получили широкого распространения из-за сложности изготовления, большой инерционности и по другим причинам. [c.239]

    Применение катарометра — детектора, работающего по принципу измерения теплопроводности, произвело известный переворот в газовой хроматографии. Однако катарометр обладает рядом недостатков. Невысокая чувствительность делает его мало пригодным для анализа примесей и микропримесей. Зависимость показаний катарометра от температуры, давления и скорости потока газа-носителя вносит погрешности в результаты анализа В связи с этим предпринимались поиски новых физических принципов детектирования измерение плотности (газовые весы Мартина), теплоты адсорбции, диэлектрической постоянной и др. [c.44]

    Дзержинским ОКБА разработаны аналитические газовые хроматографы с цифровым заданием режима работы серии Цвет-500 . Модель Цвет-530 этой серии имеет два детектора катарометр и пламенно-ионизационный. Хроматограф имеет в своем составе криогенное устройство для поддержания в термостате колонок температур от —99° до 399°С. Для определения микропрнмесей в газах хроматограф оснащен обогатительным устройством, где обогащение производится путем низкотемпературной адсорбции или конденсации. В хроматографе используются стальные и стеклянные насадочные колонки, а также стеклянные капиллярные колонки. Двухканальная схема газа-носителя позволяет устанавливать одновременно две насадочные колонки. Температурный ре -ки.м изотермический и линейное программирование температуры. С помощью интегратора осуществляется обработка информации при работе с пламенно ионизационным детектором и катарометром. [c.63]


Библиография для Адсорбция газовая хроматография: [c.140]    [c.289]   
Смотреть страницы где упоминается термин Адсорбция газовая хроматография: [c.6]    [c.10]    [c.552]    [c.589]    [c.85]    [c.348]   
Гетерогенный катализ (1969) -- [ c.146 , c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция хроматографии

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая



© 2025 chem21.info Реклама на сайте