Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Благородные газы свойства

    В пятом периоде наблюдается такая же картина сначала заполнение 5х-орбиталей, затем заполнение уровня с и = 5 прерывается заселением погруженных в общее атомное электронное облако 4 -орбиталей, которое соответствует построению второго ряда переходных металлов, и, наконец, заполнение 5р-орбиталей, завершающееся построением валентной структуры благородного газа ксенона, Хе 4 5> 5р. Общим свойством всех благородных газов является наличие у них заполненной внешней электронной оболочки х р. В этом и заключается причина упоминавшейся выше особой устойчивости восьмиэлектронных валентных оболочек (см. гл. 7). Запоздалое заполнение /-орбиталей (и /-орбиталей) обусловливает появление неодинаково длинных периодов в периодической системе первый период содержит 2 элемента, второй включает 8 элементов, а третий тоже только 8, хотя мог бы содержать 18 элементов (на уровне с и = 3 размешается 18 электронов), затем следует четвертый период с 18 элементами, хотя он мог бы содержать 32 элемента (на уровне с и = 4 размещается 32 электрона). [c.398]


    Электрические и оптические свойства. Наиболее важной нз электрических характеристик элементарных веществ является электрическая проводимость, с которой, собственно, в значительной мере связана классификация элементарных веществ. Так, элементарные металлы являются проводниками электричества первого рода, металлоиды—полупроводниками, элементарные окислители — диэлектриками, благородные газы — скользящими проводниками электричества. [c.115]

    Каковы характерные свойства следующих семейств элементов галогенов. щелочных металлов, благородных газов, щелочноземельных элементов  [c.324]

    У электронов одного и того же периода при переходе от щелочного металла к благородному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Поэтому потенциал ионизации постепенно увеличивается, а металлические свойства ослабевают. Иллюстрацией этой закономерности могут служить первые потенциалы ионизации элементов второго и третьего периодов (табл. б). [c.102]

    Р) напоминает по своим свойствам первый (водород Н), девятый элемент напоминает второй и т.д. Подметив, что каждый восьмой элемент в построенной им последовательности напоминает по своим свойствам исходный элемент, с которого начинается счет, Ньюлендс стал сравнивать свои химические октавы (восьмерки) с музыкальными октавами и сам назвал установленную им закономерность законом октав. Периодическое повторение химических свойств элементов по октавам представлялась ему проявлением их глубинной гармонии, подобной гармонии в музыке. Однако хотя такое сопоставление весьма привлекательно, на самом деле оно необоснованно. Если бы Ньюлендс знал о благородных газах, периодическое повторение свойств элементов происходило бы не но октавам, а по девяткам элементов. Ему пришлось бы отказаться от своей музыкальной аналогии, и тогда он, вероятно, избежал бы насмешек и равнодушия, к которым был весьма чувствителен. (Подробности о Ньюлендсе см. в послесловии к данной главе.) [c.306]

    Хлор образует целую серию оксианионов СЮ, СЮ , СЮ3 и СЮд, в которых проявляет последовательный ряд положительных степеней окисления. Хлорид-ион, С1 , обладает электронной структурой благородного газа Аг с четырьмя парами валентных электронов. Указанные выше четыре оксианиона хлора можно представить себе как продукты реакции хлорид-иона, СГ, в качестве льюисова основания с одним, двумя, тремя или четырьмя атомами кислорода, каждый из которых обладает свойствами акцептора электронов, т.е. льюисовой кислоты  [c.482]

    Периодическое изменение свойств элементов представлено в периодической таблице современного вида. При расположении элементов в порядке возрастания атомных номеров и группировке на основании общих свойств они образуют семь горизонтальных рядов, называемых периодами. Каждый вертикальный столбец - группа элементов - содержит элементы с близкими свойствами. Группа лития (Ы), состоит, например, из шести элементов. Все эти элементы - крайне реакционноспособные металлы, образующие хлориды и оксиды общей формулы ЭС1 и Э2О соответственно. Так же, как хлорид натрия, все хлориды и оксиды этих элементов — ионные соединения. В противоположность этому группа гелия, расположенная по правому краю таблицы, состоит из крайне инертных элементов (к настоящему времени известны соединения только ксенона и криптона). Элементы группы гелия известны под названием благородные газы. [c.127]


    Для большинства веществ частицы представляют собой молекулы. Молекула — наименьшая частица вещества, обладающая его химическими свойствами. Молекулы в свою очередь состоят из атомов. Атом — наименьшая частица элемента, обладающая его химическими свойствами. В состав молекулы может входить раз личное число атомов. Так, молекулы благородных газов одно-атомны, молекулы таких веществ, как водород, азот,— двухатомны, воды — трехатомны и т. д. Молекулы наиболее сложных веществ — высших белков и нуклеиновых кислот — построены из такого количества атомов, которое измеряется сотнями тысяч. При этом атомы могут соединяться друг с другом не только в различных соотношениях, но и различным образом. Поэтому при сравнительно небольшом числе химических элементов, число различных веществ очень велико. [c.20]

    В табл. 38 приведены некоторые свойства благородных газов, а также их содержание в воздухе. Видно, что температуры [c.667]

    Некоторые свойства благородных газов и их содержание в воздухе [c.667]

    Какие же вещества являются элементами Первыми правильно установленными элементами были металлы-золото, серебро, медь, олово, железо, платина, свинец, цинк, ртуть, никель, вольфрам, кобальт, И вообще из 105 известных к настоящему времени элементов только 22 не обладают металлическими свойствами. Пять неметаллов (гелий, неон, аргон, криптон и ксенон) были обнаружены в смеси газов, остающейся после удаления из воздуха всего имеющегося в нем азота и кислорода. Химики считали эти благородные газы инертными до 1962 г., когда было показано, что ксенон дает соединения со фтором, наиболее активным в химическом отнощении неметаллом. Другие химически активные неметаллы представляют собой либо газы (например, водород, азот, кислород и хлор), либо хрупкие кристаллические вещества (например, углерод, сера, фосфор, мыщьяк и иод). При обычных условиях лишь один неметаллический элемент-бром-находится в жидком состоянии, [c.271]

    Наиболее устойчивые элементы - благородные газы-располагаются в последовательном ряду элементов с возрастающими порядковыми номерами с интервалами 2, 8, 8, 18, 18 и 32. Зная эти интервалы и наиболее важные сходства в свойствах элементов, можно построить периодическую таблицу, в которой сходные элементы располагаются друг под другом в вертикальных колонках - группах, а химические свойства элементов закономерно изменяются вдоль горизонтальных рядов-периодов. Полную, длиннопериодную форму периодической таблицы можно Представить в компактной, свернутой форме, наглядно иллюстрирующей возможность разбиения всех элементов на три категории типические (непереходные) элементы, для которых характерно значительное изменение свойств внутри периодов переходные металлы, более сходные между собой по свойствам, и внутренние переходные металлы с чрезвычайно близкими свойствами. [c.323]

    Например, в настоящее время установлено, что атомные массы возрастают в такой последовательности Ре, N1, Со, Си в четвертом периоде (ср. с 4-й строкой рис. 7-1), Яи, КЬ, Рс1, Ag в пятом периоде (ср. с 6-й строкой рис. 7-1) и 08, 1г, Р1, Аи в шестом периоде (ср. с 10-й строкой рис. 7-1). Однако N1 по своим свойствам больше напоминает Рё и Р1, чем Со. Кроме того, оказалось, что Те имеет большую атомную массу, чем I, но I несомненно сходен по химическим свойствам с С1 и Вг, а Те сходен с 8 и 8е. Наконец, после открытия благородных газов обнаружилось, что Аг имеет большую атомную массу, чем К, тогда как все остальные благородные газы имеют меньшие атомные массы, чем ближайшие к ним щелочные металлы. Совершенно очевидно, что во всех трех отмеченных случаях нельзя руководствоваться атомными массами при размещении элементов в периодической системе. Поэтому всем элементам периодической системы были приписаны порядковые номера от 1 до 92 (в наше время до 105). (Порядковые номера элементов приблизительно соответствуют возрастанию их атомных масс.) Если расположить элементы в периодической таблице в последовательности возрастания их порядковых номеров, химически сходные элементы образуют в ней вертикальные колонки (семейства или группы). [c.311]

    Мозли, расположить элементы в порядке возрастания их порядковых номеров, то обнаруживается, что некоторые химические свойства повторяются через определенные интервалы (см. верхнюю часть рис. 7-3). Так, химически инертные благородные газы (по крайней мере считавшиеся инертными до 1962 г., когда были получены соединения ксенона со фтором и кислородом), Не, Ые, Аг, Кг, Хе и Кп, имеют порядковые номера 2, 10, 18, 36, 54 и 86, т.е. расположены с интервалами в порядковых номерах 2, 8, [c.314]

    Существует более компактная форма периодической таблицы, которая нагляднее показывает относительное изменение свойств соседних элементов (рис. 7-4). Закономерности изменения химических свойств могут быть легче поняты, если исследовать только типические элементы, рассматривая переходные металлы отдельно как особый случай и вообще оставляя в стороне вопрос о внутренних переходных металлах. В такой таблице вертикальные колонки называются группами и группы типических элементов нумеруются от 1А до УПА, а группа инертных (благородных) газов счи- [c.316]


    Переход от Ь к Р, от Ыа к С1 и т. д. связан с постепенным ослаблением свойств, присущих металлам, и с усилением свойств, характерных для неметаллов. Благородный газ является элементом, отделяющим типичный неметалл данного периода от типичного металла, открывающего следующий период. [c.37]

    Больщая часть перечисленных в табл. 21.4 свойств закономерно изменяется в зависимости от атомного номера элемента. В пределах каждого периода соответствующий галоген имеет почти самую высокую энергию ионизации, уступая только следующему за ним благородному газу. Точно так же каждый галоген в пределах своего периода имеет самую больщую электроотрицательность. В группе галогенов атомные и ионные радиусы увеличиваются с возрастанием атомного номера. Соответственно энергия ионизации и электроотрицательность уменьшаются в направлении от легких к тяжелым галогенам. При обычных условиях галогены существуют, как уже сказано выще, в виде двухатомных молекул. При комнатной температуре и давлении I атм 12 представляет собой твердое вещество, Вг2-жвдкость, а С12 и Р -газы. Высокая реакционная способность р2 очень затрудняет обращение с ним. Хранить Р2 можно в металлических сосудах, например медных или никелевых, так как на их поверхности образуется защитное покрытие из фторида соответствующего металла. Обращение с хлором тоже требует особой осторожности. Поскольку хлор путем сжатия при комнатной температуре можно превратить в жидкость, обычно его хранят и транспортируют в жидкой форме в стальных емкостях. Хлор и более тяжелые галогены обладают большой реакционной способностью, хотя и не такой высокой, как фтор. Они непосредственно соединяются с большинством элементов, за исключением благородных газов. [c.290]

    Исключение представляют благородные газы, р-элементы группы П1А периодической системы, не проявляющие в свободном состоянии окислительных свойств, а также кислород и фтор, не проявляющие восстановительных свойств  [c.95]

    Если бы изменение свойств и дальше происходило в том же направлении, то после фтора следовал бы элемент с еще более ярко выраженными неметаллическими свойствами. В действительности же следующий за фтором элемент — неон представляет собой благородный газ, не соединяющийся с другими элементами и не проявляющий ни металлических, ни неметаллических свойств. [c.73]

    За неоном идет натрий — одновалентный металл, похожий на литий. С ним как бы вновь возвращаемся к уже рассмотренному ряду. Действительно, за натрием следует магний — аналог бериллия потом алюминий, хотя и металл, а не неметалл, как бор, но тоже трехвалентный, обнаруживающий некоторые неметаллические свойства. После него идут кремний — четырехвалентный неметалл, во многих отношениях сходный с углеродом пятивалентный фосфор, по химическим свойствам похожий на азот, сера — элемент с резко выраженными неметаллическими свойствами хлор — очень энергичный неметалл, принадлежащий к той же группе галогенов, что и фтор, благородный газ аргон. [c.73]

    Четвертый ряд также начинается со щелочного металла — калия. Судя по тому, как изменялись свойства в двух предыдущих рядах, можно было бы ожидать, что н здесь они будут изменяться в той же последовательности и седьмым элементом в ряду будет опять галоген, а восьмым — благородный газ. Однако этого ие наблюдается. Вместо галогена на седьмом месте находится марганец— металл, образующий как основные, так и кислотные оксиды, из которых лишь высший МпгОт аналогичен соответствующему оксиду хлора С12О7). После марганца в том же ряду стоят еще три металла — железо, кобальт и никель, очень сходные друг с другом. И только следующий, пятый ряд, начинающийся с меди, заканчивается благородным газом криптоном. Шестой ряд снова начинается со щелочного металла рубидия и т. д. Таким образом, у элементов, следующих за аргоном, более или менее полное поч вторение свойств наблюдается только через восемнадцать элементов, а не через восемь, как было во втором и третьем рядах. Эти восемнадчать элементов образуют четвертый — так называемый большой период, состоящий из двух рядов. [c.50]

    В вертикальных столбцах таблицы — группах располагаются элементы, обладающие одинаковой валентностью в высших солеобразующих оксидах (она указана римской цифрой). Каждая группа разделена на две подгруппы, одна из которых (главная) включает элементы малых периодов и четных рядов больших периодов, а другая (побочная) образована элементами нечетных рядов больших периодов. Различия между главными и побочными подгруппами ярко проявляются в крайних группах таблицы (исключая VIII). Так, главная подгруппа I группы включает очень активные щелочные металлы, энергично разлагающие воду, тогда как побочная подгруппа состоит из меди Си,серебра Ag и золота Аи, малоактивных в химическом отношении. В VII группе главную подгруппу составляют активные неметаллы фтор F, хлор С1, бром Вг, иод I и астат At, тогда как у элементов побочной подгруппы — марганца Мп, технеция Тс и рения Re — преобладают металлические свойства. VIII группа элементов, занимающая особое положение, состоит из девяти элементов, разделенных на три триады очень сходных друг с другом элементов, и подгруппы благородных газов. [c.22]

    Сродство к электрону атомов металлов, как правило, близко к нулю или отрицательно из этого следует, что для атомов большинства металлов присоединение электронов энергетически невыгодно. Сродство же к электрону атомог, неметаллов всегда положительно и тем больше, чем ближе к благородному газу расположен неметалл в периодической системе эго свидетельетвует об усилении неметаллических свойств по мере приближения к концу периода. [c.103]

    У элементов группы VIIA утрачиваются все металлические свойства все галогены-типичные неметаллы. Их атомам не хватает всего одного электрона для завершения замкнутой электронной оболочки, присущей атомам благородных газов, и они легко восстанавливаются до анионов с электронной конфигурацией s"p . Приведем восстановительные потенциалы галогенов  [c.455]

    Полную вандерваальсову потенциальную энергию можно количественно сравнить с энергией обычных ковалентных связей, рассматривая системы, для которых известны точные кривые зависимости потенциальной энергии от межатомного расстояния г. Значения постоянных параметров а, Ь тл в выражении (14-3) могут быть вычислены из экспериментальных данных по отклонению свойств реальных газов от свойств идеального газа. В качестве примера в табл. 14-2 приведены значения этих параметров для взаимодействий между атомами благородных газов. [c.614]

    Для разделения радиоактивных благородных газов наибольшее распространение нашли полимерные мембраны в виде полых волонон, изготовленные из силиконового каучука (сплошная мембрана) или из ацетата целлюлозы (микропористое волокно), а также микропористая пленка из 4-фторэтилена— табл. 8.20, 8.21. Из табл. 8.21 видно, что селективные свойства [c.315]

    В л-комплексах образуются гибридные Пе-, Пр- и (гг—1)< -орбн-тали (п — валентная оболочка). Если общее число электронов на этих орбиталях меньше числа электронов на аналогичных орбиталях благородного газа, незаполненные орбитали могут быть использованы для координации и последующего химического изменения молекул, окружающих комплекс, и тогда л-комплекс может проявлять каталитические свойства. Другой, более существенной причиной каталитической активности л-комплексов является неравномерность электронного облака, если металл окружен разными лигандами, как, например, в случае комплекса (СеН5СМ)2 Р(1С12. [c.102]

    Свойства. Благородные газы — бесцветные, газообразные прп комнатной температуре вещества. Конфигурация внешнего электронного слоя атомов гелия остальных элементов подгруппы УША — s np . Завершенностью электронных оболочек объясняется одноатомность молекул благородных газов, весьма малая их поляризуемость, низкие т. пл., т. кип., АНпл, АН р н химиче- ская инертность. В ряду Не — Кп физические свойства изменяются симбатно росту их атомной массы наблюдающийся при этом параллелизм в изменении родственных свойств приводит к простым вавнсимостям (рис. 3.85). [c.486]

    Остановимря еще иа реакциях атомарного азота. Практически единственным источником атомов N является электрический разряд в молекулярном азоте или в смеси его с благородным газом. Азот, подвергнутый действию электрического разряда, благодаря приобретенной им при этом высокой химической активности, получил название активного азота [597, 601]. Одним из внешних признаков активного азота является послесвечение, наблюдающееся после прекращения разряда. Обычно различают два вида послесвечения коротко- и долгоживущее послесвечение. Для изучения химических свойств активного азота наибольший интерес представляет последнее, часто называемое льюис-рэлеевским послесвечением. [c.33]

    Лекция 29. Платиновые металлы. Свойства соединений. Примен1 <е. Благородные газы. [c.181]

    Н. Н. Боголюбова [2], но до недавнего времени трудоемкие численные методы этбй теории были применимы лишь для простых жидкостей, таких как сжиженные благородные газы. Начиная с 1967 года, быстро развиваются методы расчета термодинамических свойств жидких смесей, основанные на теории возмущений [3]. Эти методы относительно просты в использовании и применимы к смесям, представляющим интерес для химической технологии. Суть этих метсдоБ состоит в том, что свойства интересующей жидкой смеси (X) рассчитываются из известных свойств некоторой стандартной системы молекул (Хо)  [c.29]

    Важную роль играет реакционная способность газа, которая зависит от свойств не только газа-носителя, но и анализируемых веществ. Так, например, воздух окисляет альдегиды и олефины при сравнительно невысоких температурах, но остается в этих условиях инертным по отношению к предельным углеводородам, фторсодержащим соединениям и благородным газам. Водород может вызвать гидрирование ненасыщенных соединений. Кроме foro, он взрывоопасен, что существенно ограничивает его применение. [c.52]

    Мы уже неоднократно отмечали, что для элементов группы 8А характерна химическая инертность. До сих пор мы обсуждали главным образом физические свойства этих элементов, как, например, при изучении межмолекулярных сил в разд. 11.5, ч. 1. Согласно теории химической связи Льюиса, высокая инертность благородных газов обусловлена наличием в валентной оболочке их атомов полного октета электронов. Устойчивость такой валентной э [ектронной оболочки проявляется в высоких энергиях ионизации элементов группы 8А (см. разд. 6.5, ч. 1). [c.286]

    Первое соединение благородного газа было получено Нейлом Бартлеттом в ] 962 г. Его работа вызвала сенсацию, поскольку она означала крушение одного из парадиг-мов-веры в то, что элементы семейства благородных газов совершенно инертны в химическом отношении. Вначале Бартлетту удалось получить соединение ксенона с фтором-наиболее реакционноспособным химическим элементом. Затем было получено еще несколько соединений ксенона с фтором и кислородом. Свойства этих веществ перечислены в табл. 21.2. Три простых фторида, Хер2, ХеЕ и ХеЕ , образуются при непосредственном взаимодействии между составляющими их элементами. Изменяя количества реагентов и условия реакции, можно получать то или иное из этих трех соединений. Кислородсодержащие соединения ксенона получают при взаимодействии фторидов с водой  [c.287]


Смотреть страницы где упоминается термин Благородные газы свойства: [c.115]    [c.49]    [c.96]    [c.351]    [c.562]    [c.668]    [c.314]    [c.400]    [c.52]    [c.498]    [c.280]    [c.70]    [c.196]   
Общая и неорганическая химия (1981) -- [ c.486 , c.489 ]




ПОИСК





Смотрите так же термины и статьи:

Благородные газы физико-химические свойства

Газ благородные

Газы благородные

Изучение метаболических и токсических свойств растворимых в воде соединений ксенона. А. Дж. Финкель, К. Е. Миллер, Теоретическое исследование соединений благородных газов

Инертные благородные газы физические свойства

Общая характеристика физико-химических свойств благородных газов и их соединений

Оценка термодинамических характеристик адсорбции благородных газов на базисной грани графита на основании свойств адсорбата и адсорбента, взятых в отдельности

Получение и некоторые свойства фторидов благородных газов

Свойства благородных газов

Свойства газов

Физиологические свойства соединений благородных газов



© 2025 chem21.info Реклама на сайте