Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вант-Гоффа кинетическое

    Вант-Гоффом было разработано математическое выражение кинетических закономерностей- Н. А. Меншуткин (1887) провел систематическое исследование кинетики химических реакций в растворах, выявив значение растворителя. С Аррениус (1889) исследовал влияние температуры на скорость химических реакций. [c.17]

    Характерная для физической химии особенность — применение теоретических явлений — отмечалось уже М. В. Ломоносовым, от которого ведет свое начало и само название науки Физическая химия . Соответствующий курс впервые был прочитан М. В. Ломоносовым для студентов в 1752—1753 гг. Им же написан и первый учебник по физической химии — истинной физической химии для учащейся молодежи . В физической химии Ломоносова были предвосхищены ее будущие успехи, которые стали возможны благодаря развитию теоретических методов физики в XIX в. Труды Карно, Майера, Джоуля, Гесса, Клаузиуса, Гиббса, Вант-Гоффа, Нернста в области термодинамики, Максвелла, Больцмана, Гиббса в области молекулярно-кинетической теории и статистической физики составили фундамент и физической химии. Большая заслуга в оформлении ее как учебной дисциплины впервые после М. В. Ломоносова принадлежит [c.7]


    Это объясняется участием в тепловом движении сегментов молекул. Эффективно крупная макромолекула оказывается эквивалентной нескольким молекулам меньших размеров, т. е. число кинетических элементов в растворе возрастает. С увеличением концентрации осмотическое давление растет быстрее, чем это следует из закона Вант-Гоффа. Ограничиваясь двумя слагаемыми в вириальном разложении, уравнение можно записать в виде [c.50]

    Начало систематических исследований скорости химических превращений положено работами Н. А. Меншуткина в конце 70-х годов XIX в. Е 80-х годах Я. Вант-Гофф и С. Аррениус сформулировали основные законы, управляющие протеканием простых химических реакций, и дали трактовку этих законов, исходя из молекулярно-кинетической теории. Дальнейшее развитие этих работ привело к созданию в 30-х годах XX в. Г. Эйрингом и М. Поляни на базе квантовой механики и статистической физики теории абсолютных скоростей реакций, открывающей перспективы расчета скоростей простых (элементарных) реакций, исходя из свойств реагирующих частиц. [c.3]

    Результаты измерения осмотического давления растворов различной концентрации тростникового сахара и некоторых других веществ, полученные в свое время Пфеффером и де Фризом, позволили Вант-Гоффу (1887) установить законы осмотического давления, применив для обобщения результатов измерений осмотического давления законы термодинамики и молекулярно-кинетическую теорию газов. Вант-Гофф установил, что осмотическое давление сильно разбавленных растворов подчиняется законам идеальных газов. Он показал, что при постоянной температуре осмотическое давление прямо пропорционально концентрации или обратно пропорционально молярному объему растворенного вещества (аналогия с законом Бойля) — = —. [c.98]

    К растворам полимеров закон Вант-Гоффа в приведенном виде неприложим. Опыт показал, что осмотическое давление растворов полимеров значительно выше, чем это требует закон Вант-Гоффа. Объясняется это тем, что макромолекула благодаря гибкости ведет себя в растворе как несколько более коротких молекул, т. е, что роль кинетического элемента играет уже не макромолекула, а ее сегмент. Понятно, что чем более гибка молекула, тем при прочих равных условиях осмотическое давление выше и тем больше оно отклоняется от значения, вычисленного по уравнению Вант-Гоффа. Кроме того, с повышением концентрации осмотическое давление растворов полимеров возрастает не прямолинейно, в то время как согласно закону Вант-Гоффа осмотическое давление увеличивается прямо пропорционально концентрации. [c.454]


    Осмос и осмотическое давление. Закон Вант-Гоффа. Как было указано выше (см. 5.3), процесс диффузии частиц растворенного вещества в растворе является молекулярно-кинетическим условием образования раствора. С процессом диффузии связано явление осмоса. [c.74]

    Законы осмотического давления. Осмометрия. Осмос играет важную регулирующую роль в жизнедеятельности растительных и животных организмов. Клеточные соки имеют низкую концентрацию солей, поэтому вначале огромное число измерений осмотического давления относилось к разбавленным водным растворам неэлектролитов. В 1887 г., применив для обобщения результатов измерений термодинамику и молекулярно-кинетическую теорию, Вант-Гофф пришел к выводу, что между состоянием вещества в очень сильно разбавленном растворе и газовым состоянием того же вещества имеется формальное количественное сходство, несмотря на то что характер движения молекул растворенного вещества в жидкости отличается от движения молекул газа. В частности, Вант-Гофф показал, что 1) при постоянной температуре осмотическое давление прямо пропорционально концентрации или обратно пропорционально молярному объему растворенного вещества (аналогия с законом Бойля) 2) при данной концентрации осмотическое давление пропорционально абсолютной температуре (аналогия с законом Гей-Люссака) 3) при одинаковой температуре [c.203]

    Если сравнить увеличение скорости реакции с увеличением числа столкновений молекул газа при повышении температуры, например, от 700 до 800° К, то последнее по молекулярно-кинетической теории возрастает примерно пропорционально Т, т. е. в 1,07 раза. Из этого сравнения вытекает, что резкое возрастание скорости гомогенной реакции, например 2Н1 (г) = На (г) + Гг (г), в соответствии с правилом Вант-Гоффа нельзя объяснить увеличением полного числа столкновений молекул при нагревании. С другой стороны, если по уравнениям молекулярно-кинетической теории подсчитать число столкновений молекул НГ в 1 см в секунду при 700° К и 1 атм, то оно будет порядка 10 следовательно, скорость этой реакции при эффективности каждого столкновения была бы очень большой. Реакция должна была бы заканчиваться за 10 сек, чего нет в действительности. Очевидно, не каждое столкновение заканчивается взаимодействием. Столкновение молекул (по крайней мере для бимолекулярных реакций) — необходимое условие, но не достаточное. [c.42]

    На рис. 145 схематически сопоставлены изменения осмотического давления с концентрацией для растворов низкомолекулярного вещества (кривая 2), слабого электролита (кривая 3) и высокомолекулярного соединения (кривая /). Как видно из рисунка, осмотическое давление раствора низкомолекулярного вещества возрастает прямо пропорционально концентрации. Для слабого электролита осмотическое давление раствора обусловлено не только числом молекул, но и ионов, а так как степень ионизации уменьшается с повышением концентрации, осмотическое давление возрастает более медленно, чем концентрация. Об этом свидетельствует выпуклость кривой, которая обращена в сторону ординаты. Наконец, осмотическое давление раствора высокомолекулярного вещества возрастает быстрее, чем увеличивается концентрация. Это происходит из-за того, что макромолекула благодаря большим размерам и гибкости ведет себя в растворе как несколько более коротких молекул. Поэтому роль кинетического элемента играет уже не пся макромолекула, а соответствующие ее фрагменты. Чем более гибка молекула, тем при прочих равных условиях осмотическое давление выше и тем больше оно отклоняется от значения, вычисленного по уравнению Вант-Гоффа. На основании таких представлений для описания зависимости осмотического давления от концентрации полимеров было предложено уравнение [c.360]

    Для того чтобы произошла химическая реакция, необходимо столкновение молекул реагирующих веществ. Однако как показывает теоретический расчет, произведенный на основе молекулярно-кинетической теории, число реальных столкновений молекул оказывается гораздо большим, чем это соответствует фактически наблюдаемой скорости реакции. Не согласуется также с числом столкновений влияние температуры на скорость химической реакции. Известно, что при повышении температуры кинетическая энергия молекул возрастает. Вместе с этим должно возрастать число столкновений и скорость реакции. По подсчетам при повышении температуры на 10° в интервале температур 300—310° К число столкновений должно возрасти примерно на 2%. Скорость же химического процесса фактически возрастает в 2—4 раза (правило Вант-Гоффа), т. е. на 100—200%. [c.124]

    Вант-Гоффа в приведенном виде неприложим. Опыт показал, что осмотическое давление растворов полимеров значительно выше, чем это требует закон Вант-Гоффа. Объясняется это тем, что макромолекула благодаря гибко-Рис. XIV, 8. Зависимость осмо- ти ведет себя в растворе как несколь-. тического давления от концен- КО более коротких молекул, Т. е. что трации раствора роль кинетического Элемента играет [c.454]


    Пфеффер измерял при различных температурах осмотическое давление водных растворов сахара, содержащих 1 г сахара на 100 см раствора (С=0,02906). Он нашел, что П равно 0,664 атм нрп 6,8° С и 0,684 атм при 15,5° С. По формуле Вант-Гоффа получается соответственно 0,665 и 0,686 атм. Первые формулы Вант-Гоффа, как и первые положения кинетической теории газов, не были вполне точными. Однако редко случалось, чтобы столь простые уравнения оказывались до такой степени правильными. [c.18]

    Важным научным событием в химии стало появление в 1884 г. книги Якоба Вант-Гоффа Очерки по химической динамике , где автор обобщил данные кинетических исследований, рассмотрел кинетические законы протекания мономолекулярных и бимолекулярных превращений, влияние среды при протекании реакций в растворах и явления, которые он назвал возмущающими факторами . Большой раздел- очерков посвящен влиянию температуры. Вант-Гофф вплотную подошел к закону, который несколько лет спустя обосновал Сванте Аррениус. Из соотношения для химического равновесия и температуры [c.19]

    О том, что некоторые химические реакции не подчиняются открытым еще в прошлом веке кинетическим зависимостям, что даже в случае простейших реакций превращения идут сложным путем через промежуточные соединения, указывали еще Я. Вант-Гофф и С. Аррениус. Позднее оказалось, что для большинства реакций характерно образование активных промежуточных частиц — свободных атомов, ионов, радикалов, возбужденных молекул. [c.23]

    Объединение закона (В-2) с законом Вант-Гоффа приводит к основному кинетическому уравнению для фотохимических реакций [c.164]

    Осмотическая теория растворов Я. Вант-Гоффа по существу представляла собой приложение законов газового состояния к растворам. Я. Вант-Гофф установил, что осмотическое давление раствора пропорционально концентрации растворенного вещества (в моль/л). Такая общность основного закона (формулы Клапейрона) для газов и растворов, естественно, подкупала своей простотой, но приводила к неправильному выводу, что молекулярно-кинетические свойства растворов и газов одинаковы. [c.243]

    Весьма существенным для понимания свойств растворов полимеров является то, что растворенная макромолекула может вести себя не как одна кинетическая единица, а как несколько. Поэтому наблюдаемое понижение упругости пара, или повышение осмотического давления значительно выше, чем это вытекает из законов Рауля и Вант-Гоффа. Это явление объясняется тем, что благодаря гибкости макромолекулы отдельные ее участки ( сегменты ) могут вести себя как самостоятельные кинетические единицы [28]. [c.19]

    К растворам ВМС закон Вант-Гоффа в приведенном виде непри-ложнм [14]. Опыт показал, что осмотическое давление растворов ВМС значительно выше, чем это следует из закона Вант-Гоффа. Это происходит потому, что молекула ВМС вследствие гибкости ведет себя в растворе как несколько более коротких молекул, т. е. роль кинетического элемента играет в этом случае не макромолекула, а ее сегмент. Чем более гибка молекула, тем при прочих равных условиях осмотическое давление выше и тем больше оно отклоняется от значения, вычисленного по уравнению Вант-Гоффа. [c.35]

    Такая эависямость для ряда реакций, действительно, была установлена на опыте как самим Вант-Гоффом, так и некоторыми его предшественниками. Однако физиче( к1ш смысл этой зависимости был вскрыт Аррениусом [155] в 1889 г., который дал ей правильное истолкование на основе кинетической теории. Согласно Аррениусу, в реакцию вступают только активные молекулы, т. е, молекулы, обладающие некоторым избытком энергии Е Е ) — энергией актинации. [c.11]

    В эту переломную эпоху перехода от фактов, ждущих своего объяснения, к теоретическим выводам в совершенно новой и мало понятной области химии—катализе—большие услуги оказала физическая химия, устанавливающая закономерности на основе каталитических реакций. В 1870 г. Л. Вильгельми открыл кинетический закон действия масс при каталитическом исследовании инверсии тростникового сахара под действием разбавленных кислот. Это позволило позднее в 1867 г. К. Гульдбергу и П. Вааге сформулировать общий закон действия масс в виде динамического равновесия. К этому времени относятся классические исследования Я. Вант-Гоффа по законам кинетики (принципы различия моно-, ди- и по-лимолекулярных реакций), работы М. Боденштейна по газовым реакциям и их кинетике и исследования В. Оствальда по катализу. [c.18]

    Смеси газов и растворы имеют ряд общих свойств и в области явлений диффузии. Частицы тех и других способны самопроизвольно равномерно распределяться по всему объему. Особенно это свойство характерио для сильно разбавленных растворов. Поведение молекул неэлектролита в таком растворе аналогично поведению идеального газа. Применив для обобщения результатов измерений осмотического давления законы термодинамики и молекулярио-кинетическую теорию газов, Вант-Гофф впервые установил, что между состоянием вещества в очень разбавленном растворе и газообразным состоянием имеется полное качественное и количественное сходство (опыт 18). Другими словами, осмотическое давление сильно разбавленных растворов подчиняется законам идеальных газов. [c.38]

    В 1867 г. после работ Н. И. Бекетова шведскими учеными К. Гульдбергом и П. Вааге был сформулирован закон действия масс. Впоследствии Я. Вант-Гоффом было разработано математическое выражение кинетических закономерностей, Н. А. Меншуткиным (1887) исследована кинетика химических реакцин в растворах и выяснена роль растворителя С. Аррениусом разработана теория электролитической диссоциации (1887) и исследовано влияние температуры на скорость химических реакций (1889). [c.7]

    Дело в том, что результаты изучения порядка и молекулярио-сти реакций привели к выводам о том, что норм-алыные химические превращения , укладывающиеся в схему кинетической классификации Вант-Гоффа, по его же словам, представляют довольно редкие случаи . Поэтому Вант-Гоффу по необходимости пришлось заняться огромной по масштабам новой проблемой -- - изучением так называемых возмущающих действий, к которым он отнес стеночный катализ, автокатализ конечными продуктами, рекуперацию тепловой энергии реакций, действие растворителей и т. д. Этим явлениям Вант-Гофф в Очерках по химической динамике отводит в два раза больше места, чем нормальным реакциям , которые выглядят у него как идеальный случай. [c.114]

    Но ведь это означает, что Вант-Гофф уже в 1880-х годах фактически приступил к исследованию кинетических систем н том смысле, в каком говорилось о них выше, учитывая или, по меньшей мере, впервые указывая иа их многоф акторность Эту исключительно важную сторону кинетики Вант-Гоффа подчеркивает Н. Н. Семенов в своем предисловии к Очер кам по химической динамике Ваит-Гофф не только дал классиф и кацню возмущающих действий , но и привлек к ним внимание исследователей. К сожалению, — говорит Н. Н. Семенов в другом месте, — последующие поколения иностранных ученых все свои усилия прилагали к тому, чтобы на.ходить такие реакции, в которых отсутствуют возмущающие действия и простейшие законы обнаруживаются наиболее отчетливо [II, с. 91]. [c.114]

    Метод Вант-Гоффа. Для двух моментов времени ti и ti на кинетической кривой из уравнения (XII. 28) имеем (если к = = onst) [c.715]

    Чтобы законы, применимые для электролитов, можно было использовать и для растворов неэлектролитов, Вант-Гофф ввел поправку, коэффициент г. Коэффициент Вант-Гоффа показывает, во сколько раз истинная концентрация кинетически активных частиц и, следовательно, осмотическое давление, понижение температуры замерзания, понижение давления пара, повышение температуры кипения в растворе электролита больше, чем в эквимоляльном растворе неэлектролита [c.29]

    Я. Г. Вант-Гофф, тщательно проанализировав данные работ Н. А. Меншуткипа, высказал некоторые критические замечания. Он отметил, что неудачно избран кинетический показатель реакционной способности органических соединений ( начальные скорости ), который изменяется с температурой и объемом и при этом неизвестно, каким именно образом  [c.340]

    Изуче1ше скорости реакций в произвольно выбранный отрезок времени, как показали последующие исследования, не может дать достаточно падежной и полной кинетической характеристики органических соединений. Критическое замечание не помещало Я. Вант-Гоффу отметить, что оп далек от того, чтобы недооценить работы Меншуткипа , которые представляют собой весьма большой интерес .  [c.340]

    ОТ температуры вошло в науку как уравнение изобары (изохоры) Вант-Гоффа (А-3). Анализируя же динамику установления равновесий при различных температурах, Вант-Гофф пришел к уравнению (А-4), объединяюшему термодинамические и кинетические характеристики  [c.15]

    Оставив в стороне интересные сами по себе вопросы правильности предсказания Оствальда, заметим, что он подчеркнул подобие топливного элемента (прямого действия) с обычной печью онн должны работать при высокой температуре. Согласно термодинамике, печь должна гореть тем лучше, чем она холоднее, так как в этом случае равновесие реакцип С + Ог = СОо сдвигается в правую сторону. Однако, как видно нз повседневного опыта, скорость реакции при низких температурах слишком мала количество угля при хранении на складах не убывает, несмотря на то что термодинамически возможна реакция между ним и присутствующим в воздухе кислородом. Фактически константа скорости реакции k экспоненциально возрастает с увеличением температуры, согласно формуле k = А ехр (—WIRT). Символ W означает здесь энергию активации. Она имеет порядок величины, соответствующий увеличению скорости реакции, согласно известному эмпирическому правилу Вант-Гоффа, в два-три раза при увеличении температуры на 10° [7]. Если представить себе, что плотность тока угольного элемента является фактически количеством положительных ионов углерода, соединяющихся за 1 сек на 1 см поверхности с отрицательными ионами кислорода, то станет понятным стремление первых работавших в этой области ученых создать угольный элемент, действующий (из кинетических, но ие термодинамических соображений) при очень высоких температурах. [c.23]

    Такой сегмент, отражающий механические свойства полимера, называется механическим, еще применяют термин кинетичесний сегмент, так как величина его зависит от энергии активации (высоты барьера) внутреннего вращения. Величину термодинамического сегмента вычисляют по закрнам Рауля или Вант-Гоффа. предполагая, что эти законы приложимы к растворам полимеров (см. с 523). Аналогично различают термодинамическую гибкость, определяемую различием в потенциальной энергии конформаций, которые переходят др>г в друга в результате теплового движения, и кинетическую, зависящую от высоты преодолеваемого при этом энергетического барьера. [c.382]

    Интерпретация каталитических процессов с точки зрения кинетики реакций была дана в начале нашего века особую роль сыграли кинетические исследования Оствальда и Боден-штейна и работы Вант-Гоффа. По определению Оствальда, катализатором является вещество, которое, не входя в конечные продукты химической реакции, изменяет ее скорость. Катализатор может ускорить только термодинамически возможную реакцию. Любое увеличение константы скорости прямой реакции связано с соответствующим увеличением константы скорости обратной реакции, поэтому при действии катализатора термодинамическое равновесие не нарушается. Данные реаген- [c.9]


Смотреть страницы где упоминается термин Вант-Гоффа кинетическое: [c.246]    [c.535]    [c.167]    [c.246]    [c.126]    [c.440]    [c.44]    [c.341]    [c.405]    [c.145]   
Общая и неорганическая химия (1981) -- [ c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Вант офф

Вант-Гофф

Вант-Гоффа и кинетическая теория

Вант-Гоффа кинетические, синтеза карбамид

Уравнение Вант-Гоффа кинетическое

ант-Гоффа



© 2025 chem21.info Реклама на сайте