Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция кулоновская

    Адсорбция полярных молекул на поверхностях, имеющих электрические заряды. Прн адсорбции полярных молекул на адсорбенте, имеющем на поверхности ионы или диполи, возникает взаимодействие диполя адсорбата с электростатическим полем адсорбента. Если молекулы адсорбата невелики и обладают периферически расположенными диполями (например, молекулы воды и аммиака), они ориентируются в электростатическом поле адсорбента. Возникает так называемое ориентационное кулоновское взаимодейст- [c.495]


    По своей природе ингибиторы коррозии бывают ионными [катионного типа — катапин, ЧМ анионного типа — тиомочевина С5 (ЫН2)2] или молекулярными соединениями (например, антра-ниловая кислота). Ингибиторы адсорбируются на поверхности корродирующего металла или электростатически (адсорбция ионов и полярных молекул за счет кулоновских сил при соответствующем знаке заряда поверхности металла) или специфически (адсорбция поверхностно активных ионов и молекул за счет молекулярных ван-дер-ваальсовских сил), или химически (хемосорбция ионов и молекул за счет валентных сил химического сродства) возможна также адсорбция их вследствие одновременного действия разных сил. [c.345]

    При адсорбции иона на поверхности диэлектрика, также состоящего из ионов, между ионами адсорбента и адсорбированным ионом должны возникать кулоновские силы. Положительный ион, адсорбированный на отрицательном ионе адсорбента, притягивается этим ионом, но отталкивается другими ионами адсорбента, расположенными в непосредственной близости вокруг адсорбирующего отрицательного иона затем он снова притягивается ионами последующего слоя и т. д. В результате всех этих взаимодействий адсорбированный нон испытывает довольно слабое притяжение. Электростатическое поле, создаваемое вблизи кубической грани поверхности кристалла галоидной соли щелочного металла, выражается следующим уравнением, которое было выведено Хюккелем [30]  [c.34]

    При адсорбции на плоских поверхностях ионных диэлектриков поляризация оказывает значительно большее влияние на энергию адсорбции ионов, чем электростатическое притяжение кулоновскими силами [31]. [c.36]

    Адсорбция полярных молекул на адсорбенте, имеющем ионы или диполи, вызывает взаимодействие диполя адсорбата с электростатическим полем адсорбента. Если молекулы адсорбата невелики и обладают периферийно расположенными диполями, как, например, у молекул воды или аммиака, то они ориентируются в электростатическом поле адсорбента. При этом возникает ориентационное кулоновское взаимодействие. [c.107]

    При введении поверхностно-активных веществ молекулярного типа вблизи потенциала незаряженной поверхности молекулы, обладающие специфической адсорбцией, внедряются в двойной электрический слой, увеличивая его толщину и снижая емкость. При потенциалах, достаточно удаленных от как в положительную, так и в отрицательную сторону, электростатические (кулоновские) силы превосходят силы адсорбции, поэтому молекулы поверхностно-активных веществ вытесняются с поверхности электрода и замещаются слоем ионов. В результате на кривой появляются максимумы емкости, по которым можно судить об области адсорбции поверхностно-активных веществ (потенциалы десорбции). [c.104]


    Третий пример образования двойного электрического слоя, как и второй, отвечает идеально поляризуемому электроду, но в таком растворе, где адсорбция ионов на поверхности электрода обусловлена не только чисто кулоновскими силами, а и другими более сложными [c.27]

    Третий случай образования двойного электрического слоя, как и второй, отвечает идеально поляризуемому электроду, но в таком растворе, где адсорбция ионов на поверхности электрода обусловлена не только чисто кулоновскими силами, а и другими более сложными видами взаимодействия, которые обычно объединяются общим тер- [c.29]

    Перейдем теперь к рассмотрению модельных представлений о строении двойного электрического слоя в условиях, когда адсорбция ионов определяется не только их кулоновским притяжением или отталкиванием зарядами электрода, но и всеми другими видами взаимодействия с электродом (например, донорно-ак- [c.143]

    По этим смещениям можно оценить энергию специфической (не-кулоновской) адсорбции, выражаемой величиной адсорбционного потенциала Фа. [c.195]

    Таким образом, Oi выражает дополнительную (к кулоновской) энергию адсорбции иона отрицательные значения Ф отвечают притяжению, положительные — отталкиванию. [c.200]

    ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, разность электростатич. потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение Э. п. обусловлено пространств. разделением зарядов противоположного знака на границе раздела фаз и образованием двойного электрического слоя. На фанице между металлич. электродом и р-ром электролита пространств, разделение зарядов связано со след, явлениями переносом ионов из металла в р-р в ходе установления электрохим. равновесия, кулоновской адсорбцией ионов из р-ра на пов-сть металла, смещением электронного газа за пределы положительно заряженного ионного остова кристаллич. решетки, специфич. (некулоновской) адсорбцией ионов или полярных молекул р-рителя на электроде и др. Последние два явления приводят к тому, что Э. п. не равен нулю даже при условиях, когда заряд пов-сти металла равен нулю (см. Потенциал нулевого заряда). [c.424]

    Джеймс и Хили [243] предположили, что при адсорбции гидролизуемых ионов (поликатионов) на оксидной гидратированной поверхности энергетические изменения за счет кулоновских сил и химических превращений, благоприятствующих адсорбции, уравновешиваются энергией сольватации, которая противодействует этому процессу. [c.932]

    В то время как амины и аминокислоты, несущие положительный заряд, более прочно удерживаются при более высоких значениях pH, для отрицательно заряженных сорбатов справедливо обратное. Систематические исследования, проведенные на серии N-бензоил-о, L-аминокислот, позволили глубже понять механизм взаимодействия сорбата с белком. Влияние изменения свойств подвижной фазы на величины к VI а демонстрирует рис. 7.10. Во-первых, удерживание в значительной степени возрастает с усилением гидрофобного характера аминокислоты (Ser > А1а> Phe). Во-вторых, увеличение суммарного отрицательного заряда белка с увеличением pH вызывает уменьшение к для всех шести соединений (вследствие ионного взаимодействия). Далее, влияние концентрации буфера можно объяснить усилением адсорбции вследствие ионных взаимодействий при низкой ионной силе. Небольшое, но вполне заметное возрастание к для наиболее сильно удерживаемых сорбатов при высоких концентрациях буфера вероятнее всего является результатом усиления гидрофобных взаимодействий. Поскольку ионные (кулоновские) и гидрофобные взаимодействия по-разному подвержены влиянию ионной силы, то оба эффекта приводят к возникновению минимума в адсорбции сорбата (к ) в определенной точке. И наконец, совершенно очевидно влияние органического растворителя-модификатора он всегда приводит к понижению удерживания сорбата и тем сильнее, чем более гидрофобен сорбат. Влияние pH и ионной силы на удерживание незаряженных соединений невелико, но выражено вполне отчетливо. Оно связано исключительно с изменениями в связывающем центре ХНФ. Добавление пропанола-1 вызывает уменьшение удерживания по сравнению с наблюдаемым у заряженных сорбатов, что свидетельствует о преимущественном вкладе в удерживание гидрофобных взаимодействий. Это подтверждает также наблюдаемое очень большое влияние на удерживание длины цепи алканола-1. Высшие спирты являются значительно более эффективными конкурентами за связывающий центр, а потому вызывают более быстрое элюирование сорбата. Возможность регулирования удерживания путем изменения подвижной фазы, которую демонстрирует схема 7.6, говорит о том, что эту особенность данных хроматографических систем можно использовать в целях оптимизации разделения. [c.135]

    Известны три подхода к теоретической оценке энергии специфического взаимодействия. В первом из них вычислялся вклад энергии специфического взаимодействия молекул групп В ш В с, ионными адсорбентами в общую энергию адсорбции как классическое кулоновское взаимодействие диполя и квадруполя молекулы с электростатическим полем ионной решет- [c.137]


    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Подобные отклонения можно объяснить двояко. Отказавшись от постулата 3, приходим к представлению о хемосорбции на однородной поверхности, сопровождающейся взаимодействием сорбированных частиц. Если это взаимодействие заключается во взаимном отталкивании, теплота адсорбции должна уменьшаться с увеличением степени заполнения в согласии с опытными данными. Выбрав некоторую зависимость коэффициента адсорбции Ь [связанного с теплотой адсорбции соотношением (1.6) ] от степени заполнения поверхности и подставив ее в уравнение (1.5), можем аппроксимировать таким образом любую экспериментальную изотерму адсорбции. Отталкивание хемосорбированных молекул может являться следствием квантово-механического обменного взаимодействия [9]. Силы кулоновского или диполь-динольного взаимодействия играют малую роль, так как они долнщы сказываться лишь при значительной плотности сорбированных молекул, между тем отклонения от изотермы Лангмюра (или изотермы Генри) часто становятся заметными уже при очень малых степенях заполнения поверхности. Весьма правдоподобно объяснение природы сил взаимодействия сорбированных частиц через посредство электронного газа кристаллической решетки катализатора (см. постулат 3, а также работы [9, 10]) сила такого взаимодействия незначительно уменьшается [c.17]

    Активные центры для адсорбции полярных молекул на поверхности ионных кристаллов (см. раздел У,5) совпадают с активными цент )ами для адсорбции иод действием кулоновских сил. Е5лияиие этих активных центров менее выражено в случае дипольных молеку [, чем в случае ионов. Диноли, об])азующиеся на поверхности металлов, оказывают слабое влияние на адсорбцию (см. раздел У,5), и поэтому эффекты, связанные с активными центрами, не могут быть при этом значительными. [c.68]

    Измеиение знаков е и может произойти из-за сверхэквива-лентной (специфической) адсорбции противоионов в адсорбционном слое под действием дополнительных не кулоновских ван-дер-ваальсовых) сил. Этой способностью обладают ионы, либо поляризующие твердую фазу (например, многовалентные ионы Се +, АН+, Ре 5+), либо сложные органические ионы (алкалоиды, ПАВ, красители), поляризованные твердой фазой. В результате ДЭС приобретает сложную трехслойную структуру (рис. 31). [c.81]

    Предположим вначале, что в растворе нет поверхностно-активных органических веществ (ПАОВ), а адсорбция ионов раствора на электроде обусловлена только электростатическим взаимодействием заряда поверхности с зарядами ионов кулоновским притяжением в случае Г > О и кулоновским отталкиванием в случае Г < 0. Такие электролиты называют поверхностно-неактивными. В растворах этих электролитов между адсорбированными ионами и поверхностью электрода всегда сохраняется прослойка из молекул растворителя (рис. 3.3). При потенциале нулевого заряда (п.н.з.) кулоновское взаимодействие ионов с электродом отсутствует, а потому в растворе поверхностнонеактивного электролита Г+ Г = О. Следствием этого является независимость п. н. з. от концентрации поверхностно-неактив-ного электролита. В этом случае п. н. з. определяется только кристаллографической гранью данного металла и природой растворителя н его называют нулевой точкой. [c.139]

    Адсорбция полярных молекул иа полярном адсорбенте вызывает ориентационное кулоновское взаимодействие диполя адсорбата с электростатическим полем адсорбента. Энергия индукционных и ориентационных сил, как и дисперсионных, при парном взаимодействии одинаковым образом зависит от расстояния — обратно пропорциональна шестой степени расстояния между центрами взаимодействующих атомов. И ориентационное, и индукционное взаимодействия, будучи электростатиче- [c.212]

    Из растворов электролитов происходит адсорбция ионов, вызываемая не только неспецифическими (адсорбционными) взаимодействиями, но и электростатическими (кулоновскими) силами. Электролиты адсорбируются только на таких поверхностях, которые содерлсат или ионы (гетерополярные поверхности), или функциональные группы, способные к ионизации. Примером такого типа адсорбентов служит окисленный активный уголь, на поверхности которого имеются карбоксильные группы. Восстановленный уголь не адсорбирует электролиты, которые ведут себя в этом случае как поверхностно-инактивные вещества. [c.228]

    На поверхности твердых веществ, имеющей гидрофильные функциональные группы, адсорбируются только ионы железа (III), обладающие большей плотностью заряда и образующие даже в кислых растворах гидроксокомплексы типа [Ре(0Н)2(Н20)4]+. При низких концентрациях, когда доля поверхности 0 твердых веществ, заполненной гидроксокомплек-сами, невелика, адсорбция ионов происходит по координационному механизму в пленку адсорбированной воды, а не по механизму ионного обмена. Ионы железа (III) не достигают поверхности. т. е. не проходят двойного электрического слоя, что позволяет при выводе уравнения адсорбции пе рассматривать кулоновскую составляющую энергии адсорбции. Условием постоянства электродного потенциала при любом содержании твердого вещества в суспензии является равенство химических потенциалов ионов в растворе и на поверхности твердого вещества-адсорбента, т. е. рр= 1т- Вводя активности ионов, получаем [c.205]

    Уравнения (XII. 16) учитывают, как это видно из вывода, лишь кулоновское взаимодействие противоионов с ионами внутренней обкладки и не учитывают специфической адсорбции противоионов под действием некулоновских (вандерваальсовых) сил. Это специфическое взаимодействие, характерное для адсорбции многовалентных ионов, ионов красителей, алкалоидов, ПАВ, рассматривается в теории Штерна (1924). [c.200]

    Второй случай изменения знаков 117] и связан с возможностью сверхэквивалентной (специфической) адсорбции противоионов во внешней обкладке под действием дополнительных, не кулоновских (вандерваальсовых) сил. Этой способностью обладают ионы, либо [c.207]

    Специфика адсорбции электролитов связана с относительно более дальнодействующим характером электростатических (кулоновских) взаимодействий ионов по сравнению с ван-дер-ваальсовскими взаимодействиями молекул. Это вызывает большую размазанность межфазных слоев, образованных ионами, сравнительно с молекулярными адсорбционными слоями, благодаря чему поверхность разрыва приобретает заметную (иногда макроскопическую) толщину. С таким диффузным характером ионизированных адсорбционных слоев и связано возникновение электрокинетических явлений. [c.173]

    При рассмотрении хемосорбции на регулярных атомах поверхности электронная теория хемосорбции обычно предполагает, что хемосорбированпые частицы не изменяют спектр поверхностных состояний неадсорбционного происхождения [1], характеризуемых положением уровней в зоне Е( и сечениями захвата электронов (Сп) и дырок (Ср). При адсорбции непосредственно на дефекте теория [1] показывает, что может либо совсем исчезнуть локальный уровень дефекта, либо может измениться величина Е . Однако такой путь не единственный. Даже при отсутствии взаимодействия непосредственно с дефектом кулоновские поля адсорбируемых молекул могут существенно изменить величины Ср/Сп и дефекта [27, 28], превратив его в центр захвата. Такие поля могут быть созданы диполями, возникающими при нейтральной форме хемосорбции, а в некоторых случаях вызываться даже физической адсорбцией, когда адсорбируемые молекулы обладают большим дипольным моментом и большой поляризуемостью, а решетка — высокой диэлектрической проницаемостью е. [c.96]

    В то же время, если энергия валентных состояний адатома находится за пределами валентной зоны металла, виртуальные связывающие состояния образоваться не могут. Если атомный энергетический уровень расположен значительно ниже уровня Ферми, то в принципе возможен такой переход электрона с уровня Ферми и образование адиона, при котором кулоновское отталкизаике электронов в ионе не повышает энергию ионного состояния (после учета взаимодействия между ионом и его изображением в металле) настолько, чтобы связывание стало невозможным. Однако атомный энергетический уровень, по-видимому, редко располагается настолько низко, чтобы имела место чисто ионная адсорбция. Более вероятным представляется промежуточный вариант электроны не локализуются на адатоме, а распределяются между ним и одним или несколькихми поверхностными атомами металла с образованием квазинор-мальной ковалентной связи. Вполне допустимо участие в этом связывании металлических валентных состояний у верхней границы валентной зоны, где их плотность (для переходных металлов максимальна. [c.18]


Смотреть страницы где упоминается термин Адсорбция кулоновская: [c.28]    [c.47]    [c.186]    [c.68]    [c.103]    [c.39]    [c.168]    [c.38]    [c.5]    [c.57]    [c.138]    [c.168]    [c.513]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.96 ]




ПОИСК







© 2025 chem21.info Реклама на сайте