Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление на угле

    Принципиальное отличие вискозиметра ВР-3 состоит в использовании силоизмерителя электронного типа. Перемещение горизонтального вала вызывает деформацию чувствительного элемента тензодатчика, которая преобразуется в электрический сигнал и регистрируется потенциометром. Шкала потенциометра проградуирована в единицах вязкости по Муни. В узле измерения эластического восстановления угол поворота ротора с помощью потенциометрического датчика также преобразуется в электрический сигнал, регистрируемый потенциометром. Цикл работы вискозиметра устанавливается по реле времени, которое автоматически включает и выключает электродвигатель и запись диаграммы измеряемых показателей. [c.86]


    При химическом восстановлении в качестве восстановителя чаще всего применяют уголь или оксид углерода (П.) Таки.м способом получают железо (в доменном процессе), водород и многие цветные металлы (олово, свинец, цинк и пр.)  [c.242]

    В работе [90] на примере гидрирования циклопропана исследована удельная каталитическая активность ряда нанесенных и ненанесенных металлических катализаторов и определена активная поверхность металла. В качестве катализаторов использовали Ni, Со, Мо, Rh, Pt и Pd, нанесенные на А Оа, кизельгур и активированный уголь, а также Pt- и Pd-черни. Активность и поверхность катализаторов определяли методом импульсного отравления поверхностных активных центров оксидом углерода. Установлено, что наиболее активными и селективными являются Ni-катализаторы, восстановленные при 360 °С. Показано, что в присутствии Ni, Со, Мо и Rh проходит как гидрогенолиз циклопропана, так и его гидрокрекинг на Pt и Pd крекинг не протекает. По общей активности исследованные катализаторы располагаются в ряд Rh > Ni > Pd > Pt > Мо > Со, по активности в реакции гидрокрекинга получен иной ряд Ni > Со > Мо > Rh > Pt, Pd. Эти результаты показывают, что примененный метод с использованием гидрогенолиза циклопропана в качестве модельной реакции дает возможность быстро и достаточно точно определять удельную активность металлсодержащих катализаторов и поверхность металла. Полученные результаты хорошо согласуются с данными, найденными классическими методами. [c.104]

    Термодинамика может предсказать высокую степень превращения вещества при заданных температуре и давлении, но это не дает никакой уверенности в том, что реакция будет протекать даже с бесконечно малой скоростью. Известно много примеров, когда по условиям равновесия возможно полное превращение исходных реагентов на самом же деле они не вступают в реакцию. Так, при нормальных условиях сухая смесь кислорода и водорода может сохраняться неопределенно долго уголь в заметной степени не реагирует с кислородом воздуха алюминий не взаимодействует с водой, несмотря на то, что в каждом и этих примеров термодинамическое равновесие наступает при полном превращении исхо дных веществ. Быстрым охлаждением образовавшихся при высоких температурах окислов азота или магния (полученного восстановлением MgO углеродом) можно пред- [c.12]

    Световой луч при переходе из одной среды в другую иной плотности, например из воздуха в воду, или наоборот, отклоняется от своего первоначального направления, или, как говорят, преломляется. При этом, когда луч переходит в среду более плотную (из воздуха в воду), он приближается к перпендикуляру, восстановленному в точке перехода, и, наоборот, удаляется от этого перпендикуляра при переходе из среды более плотной в менее плотную. С изменением угла падения меняется также угол преломления, причем отношение синуса угла падения к синусу угла преломления остается постоянным. Это отношение называется коэффициентом, или показателем преломления. Для воздуха и воды показатель преломления равняется 4/3 или 3/4, смотря по тому, идет ли луч из первой среды во вторую, или наоборот. [c.52]


    Активный уголь (мезо- и макропоры), пористые стекла, восстановленная окись железа, скелетные катализаторы [c.371]

    Если луч попадает из оптически менее плотной среды в оптически более плотную, то он приближается к перпендикуляру, восстановленному в точке перехода. Если же, наоборот, луч попадает из оптически более плотной среды в оптически менее плотную, то он удаляется от этого перпендикуляра. С изменением угла падения меняется угол преломления, но отношение величин этих углов для одной и той же среды остается постоянным  [c.74]

    Экспериментально определяется не амплитуда рассеянной волны, а поток энергии или частиц, пропорциональный ее квадрату. В рентгеноструктурном анализе вводится специальная функция 1(з), называемая интенсивностью рассеяния или дифференциальным сечением рассеяния (для дифракции нейтронов). Размерность этой функции — квадрат длины. Обычно решается обратная задача по восстановлению распределения рассеивающей плотности по измеренной экспериментально функции 1(з). Величина 5 = связывает угол рассеяния 6 с [c.101]

    Во время написания книги в стадии опытной проверки или промышленного освоения находилось несколько процессов, в которых углеводороды используются для непосредственного превращения железной руды в металлическое железо. В этих процессах для прямого восстановления обычно применяются углеводороды, хотя в некоторых из них используется и уголь, а также предусматриваются разнообразные способы и средства, обеспечивающие контактирование железной руды, газов, воздуха или кислорода. [c.306]

    В ближайшие 10—15 лет газ может найти широкое применение в черной металлургии (табл. 61). Надежность прогноза всегда снижается из-за неопределенности ряда факторов экономического положения производителя стали, использующего более дешевые и более богатые руды подъема экономики после спада с соответствующим ростом потребности в стали степени развития технологии и масштабов роста производства стали из скрапа, снижающих потребность в рудном сырье для доменного процесса времени, необходимого для вытеснения доменного процесса методом прямого восстановления железа ресурсов и цен на конкурирующие виды топлива (природный газ, нефть, кокс, уголь) выделения заводов для производства специальных сталей из состава заводов полного металлургического цикла и передачи их в руки независимых производителей. [c.312]

    Аппарат, предназначенный для испытания, состоит из алюминиевого цилиндра с наружной резьбой, крестовины с надрезами, установленной на цилиндре, и цилиндрического сосуда емкостью 85 мл. Схема прибора приведена на рис. 7.6. В сосуд заливают приблизительно 50 г расплавленного битума и туда же опускают цилиндр с диском до тех пор, пока поверхность диска не будет на одном уровне со слоем расплавленного битума. В таком положении цилиндр с диском центруют на крестовине с надрезом при помощи контргайки (крестовина используется также для контроля уровня в процессе испытания). Затем собранный прибор выдерживают при 25 °С не менее 2 ч. С помощью гаечного ключа и контргайки диск поворачивают с постоянной скоростью на угол 180° относительно сосуда и немедленно опускают. Угол, на который возвращается диск, измеряется через 30 с и снова через 30 мин. Затем вычисляют степень обратимого восстановления для обоих периодов времени в %. [c.222]

    Получение простых веществ химическим восстановлением соединений. В качестве восстановителя применяют уголь и оксид углерода (Н), кремний, металлы (металлотермия), водород. Выбор того или иного восстановителя можно сделать при сопоставлении значений энергии Гиббса образования соответствующих соединений. [c.192]

    Ткань, разрезанную на полоски размером 1X4 см, пропитывали в течение 30 минут при температуре в 75° по Фаренгейту раствором, который содержал одну из марок покупных детергентов в трех следующих концентрациях 0,5%, 3% и 6,75%, Затем пропитанные образцы сжимали в течение одной минуты между стеклянными пластинками под грузом, весящим 50 г. Вслед за этим образцам, подвешенным на проволоке, давали 30 минут времени для высыхания и восстановления от деформации при температуре в 70° по Фаренгейту" и относительной влажности в 65%. После этого измеряли угол складки, пользуясь для этой цели рентгеновскими снимками обработанных образцов, сделанных на светочувствительной бумаге. Так как при значительной деформации угол складки очень мал, то поэтому пользовались следующим дополнительным углом  [c.236]

    При определении эластического восстановления материалов на приборах типа ВР-1 и ВР-2 ротор отключают от привода и угол его обратного поворота отсчитывают по специальному указателю. [c.36]

    В качестве адсорбентов на практике применяют древесный и костяной угли, силикагель, высокодисперсные металлы, полученные восстановлением их из оксидов. Активированный уголь получают путем соответствующей активации угля-сырца твердых древесных пород. Уголь-сырец подвергают термической обработке для увеличения удельной поверхности. Активирование производят в атмосфере водяного пара или оксида углерода (IV) при температуре [c.346]


    Приборы и реактивы. Микроколбочка. Прибор для восстановления меди. Оксид меди (II). Уголь (порошок). Цинк (гранулированный). Медь (проволока и стружка). Растворы сероводородная вода (свежеприготовленная) крахмала формалина (10%-ный) азотной кислоты (2 н. плотность 1,4 г/см- ) серной кислоты (4 и., 2 н. плотность 1,84 г/см ) хлороводородной кислоты (2 н. плотность 1,19 г/см ) едкого натра или кали (2 н.) аммиака (2 н.) сульфата меди (II) (0,5 н.) хлорида меди (II) (0,5 н.) карбоната натрия (2 н.) иодида калия (0,5 н.) тиосульфата натрия (0,5 н.) сульфита натрия (0,5 н.). [c.198]

    Химические свойства углерода. Углерод является типичным неметаллом (см. разд. 11.4). При низких температурах и уголь, и графит и, в особенности, алмаз инертны. При нагревании их активность увеличивается уголь легко соединяется с кислородом и служит хорошим восстановителем. Важнейший процесс металлургии — выплавка металлов из руд — осуществляется путем восстановления оксидов металлов углем (или монооксидом углерода). [c.409]

    В поляриметре пользуются монохроматическим светом, применяя светофильтр 2. При внесении трубки 4 с оптически деятельным раствором плоскость поляризации пучка света, падающего на поляризатор, поворачивается на определенный угол скрещенная призма уже не будет гасить проходящий свет, и равная освещенность поля нарушается. Вращением анализатора добиваются восстановления равной освещенности. Угол поворота анализатора отвечает углу вращения плоскости поляризации света а раствора. Он отсчитывается по лимбу 6 (шкале) и нониусу 7 (см. рис. 50,6) с точностью до 0,1°. Число целых градусов определяют по последнему делению основной шкалы лимба слева от нуля нониуса. Десятые доли определяют на правой части шкалы нониуса по делению, которое совпадает с каким-либо делением шкалы лимба. [c.229]

    Для определения угла смачивания а (рис. 11.6) на миллиметровой бумаге откладывают отрезок АВ, равный диаметру основания капли, и проводят окружность через точки АВС. Затем проводят касательную к окружности в точке А до пересечения с перпендикуляром к, восстановленным из середины отрезка АВ. Определив к, по тангенсу а находят угол смачивания. [c.77]

    Уголь является сырьем для химической промышленности. Важнейшая отрасль химической переработки каменного угля — коксохимическая промышленность. При коксовании, которое осуществляется нагреванием угля до 900—1100° С без доступа воздуха, получают целый ряд ценных продуктов кокс, газ, смолу, аммиачную воду и т. п. Кокс используется в качестве высококалорийного топлива и, главным образом,, в черной и цветной металлургии для восстановления металлов из руд. Он является хорошим и сравнительно дешевым восстановителем. Кроме того, кокс служит сырьем для получения карбида кальция (см. гл. И, 7). Химической переработкой каменноугольной смолы н аммиачной воды получают ряд необходимых для народного хозяйства продуктов бензол, фенол, удобрения для сельского хозяйства и т. п. [c.86]

    Способы получения. Раньше для получения натрия и калия широко использовались термические методы восстановления гидроксидов или карбонатов. В качестве восстановителей использовались железные опилки, уголь, магний и водород (температура от 800 до 1200° С). [c.234]

    Газообразные и жидкие фазы образуются в процессе обжига твердых материалов вследствие их возгонки, диссоциации и плавления. Во многих случаях один из твердых реагирующих компонентов газифицируется при взаимодействии с компонентами газообразного теплоносителя. Например, часто уголь, входящий в шихту в качестве восстановителя, лишь частично реагирует в твердом (неизменном) виде с другими твердыми компонентами главным образом он, взаимодействуя с кислородом и диоксидом углерода, находящимися в проходящих через печь газах, превращается в оксид углерода, который и выполняет роль восстановителя. Так, реакция восстановления сульфата железа углем [c.346]

    При восстановлении циклопентанона угловое напряжение (подсчитанное аналогично) возрастает примерно на 7 кДж/моль, растет и напряжение заслонения — соответственно снижается и скорость реакции. Внутренний угол ССС (около 100°), имеющийся в циклогексаноне и циклогексане, отвечает состоянию хр -гибридизации, поэтому превращение в ходе восстановления циклогексанона снова идет быстро. Напряжения заслонения в циклогексановом кресле, состоящем целиком из скошенных конформационных звеньев, нет. [c.360]

    Из растворов электролитов происходит адсорбция ионов, вызываемая не только неспецифическими (адсорбционными) взаимодействиями, но и электростатическими (кулоновскими) силами. Электролиты адсорбируются только на таких поверхностях, которые содерлсат или ионы (гетерополярные поверхности), или функциональные группы, способные к ионизации. Примером такого типа адсорбентов служит окисленный активный уголь, на поверхности которого имеются карбоксильные группы. Восстановленный уголь не адсорбирует электролиты, которые ведут себя в этом случае как поверхностно-инактивные вещества. [c.228]

    Процесс сухой очнстки от сероводорода активным углем основан на окислении сероводорода до элементарной серы кислородом на поверхности активного угля. Образующаяся при очистке элементарная сера отлагается в порах угля по мере заполнения поверхности угля серой процесс очистки замедляется и прекращается. Для восстановления поглотительной способности угля его промывают раствором сернистого аммония. После промывки и пропарки активный уголь вновь пригоден для очистки газа. Каталитическая очистка газа протекает в две ступени на первой ступени на катализаторе при подаче пара или водорода органические соединения серы превращаются в сероводород, а на второй ступени сероводород удаляют из газа. [c.47]

    Выделение металлов из их соединений путем электролиза лежит в основе электрометаллургических процессов. Металлы, восстанавливающиеся сравнительно легко, выделяются обычно не путем электролиза, а с помощью наиболее дешевого в наше время массового восстановителя — угля, применяемого в виде кокса (вспомним, например, доменный процесс). Для металлов, наиболее трудно восстанавливаемых, уголь уже непригоден, и в этом случае прибегают к к а-тодному восстановлению, т. е. выделению путем электролиза. Такие металлы могут окисляться водой, и поэтому их соединения подвергаются электролизу не в водных растворах, а в расплавленном состоянии или в растворах в других растворителях. Так, металлический магний получается электролизом расплавленного Mg b, металлический натрий — электролизом расплавленного едкого натра, металлический алюминий — электролизом раствора окиси алюминия в расплавленном криолите 3NaF AIF3 Все эти процессы проводятся при высокой температуре, для алюминия, например, при 1000 С. Они являются весьма энергоемкими, так как металлы эти обладают малым атомным весом, алюминий к тому же трехвалентен (1 г-экв алюминия равен всего 7 г) и, следовательно, требуется большой (около 4-10 а-ч) расход тока на тонну выплавляемого металла. [c.447]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Когда говорят о типах катализаторов, используемых для данной реакции гидрирования, обычно указывают только, что катализатор никелевый или из благородного металла можно сказать, что катализатор принадлежит к группе железа. Однако все эти термины дают весьма неоднозначное описание, в котором соседствуют дезинформация и правда. Например, катализатором группы железа может быть никель, железо или кобальт, причем в одной или нескольких различных формах. Как правило, это нанесенные катализаторы, т. е. полученные осаждением металла на носитель или пропиткой его раствором соли металла. В качестве носителей чаще используют инфузорную землю (кизельгур), порошкообразные оксид кремния и активированный уголь, оксиды магния и редкоземельных элементов, оксид алюминия или молекулярные сита. (Существует много типов окспда алюминия, и каждый из них оказывает свое положительное или отрицательное влияние на получающийся катализатор.) В задачу данной главы не входит описание приготовления катализаторов, которое слишком сложно. Отметим только, что, называя катализатор никелевым, мы не даем ему адекватной характеристики. Даже если назван носитель, то еще нельзя определить, как будет работать катализатор. Свойства катализатора сильно зависят от способа его приготовления, типа носителя, наличия промоторов, введенных сознательно или случайно попавших при осаждении. Способы восстановления и стабилизации катализатора также могут оказать решающее воздействие на его эксплуатационные характеристики, в том числе на активность и селективность. [c.108]

    Крёниг [15] установил, что в условиях промышленной гидрогенизации уголь начинает гидрироваться еще в процессе предварительного подогрева перед поступлением его в реакционный объем. Так, начиная приблизительно с 320°, происходит восстановление кислородсодержащих групп гуминов в качестве первой ступени гидрирования. Благодаря этому твердый уголь уже при умеренных температурах переходит в ожижен-ное состояние практически же в конце периода подогревания в основном заканчивается процесс дезагрегации угля, т. е. переход его в растворимые в бензоле соединения. [c.175]

    Действующие сегодня классификации рассматривают уголь в основном как энергетическое топливо, поэтому в них недостаточно отражены свойства, важные для процессов химико-тех-нологической переработки. В настоящее время во многих странах ведутся исследования по разработке методов однозначной оценки пригодности любого угля для различных направлений его технологического использования, в том числе и для переработки в моторные топлива. В Советском Союзе в последние годы завершена разработка такой единой классификации углей на основе их генетических и технологических параметров (ГОСТ 25543—82). По этой классификации петрографический состав угля выражается содержанием фю-зинизированных микрокомпонентов (20К). Стадия мета р-физма определяется по показателю отражения витринита (Л ), а степень восстановленности выражается комплексным показателем для бурых углей — по выходу смолы полукоксования, а для каменных углей — по выходу летучих веществ и спекаемости. Каждый из классификационных параметров отражает те или иные особенности вещественного состава и молекулярной структуры углей. [c.67]

    I ступени соответственно) представляют собой интервалы передачи заряда в МСС, сопровождающиеся окислением углеродной матрицы и восстановлением H2SO4 до HS0J. Конечное плато EF является областью переокисления, в которой, кроме упомянутых выше, протекает ряд побочных реакций образование пе-роксисульфатов и ковалентных С-0 связей, которые вызывают перестройку углеродной решетки. Точка F соответствует началу выделения кислорода. Угол наклона кривой по мере снижения ступени внедрения уменьшается вследствие увеличения поверхности раздела между внедряемым веществом и углеродными плоскостями. Удельная поверхность одного графитового слоя равна 31200 м /моль или 2600 м /г [6-85]. [c.304]

    На рис. 8.37 изображены графики зависимости отношения полных давлений за и перед системой скачков от угла косого скачка прп различных значениях скорости невозмущенпого потока (т. е. при различных значениях Мн или Ян), вычисленные для диффузора с двумя скачками косым и следующим за ним прямым. Каждому значению числа Мн (рис. 8.37) отвечает некоторый угол косого скачка ( опт), при котором восстановление [c.466]

    Определение лучше проводить полумикрометодом простейшим вариантом является восстановление на обугленных содовых палочках по Бунзену. Недостатком этого способа является отсутствие налетов оксидов. Для проведения реа1сции необходима сода и деревянные палочки длиной 20—30 см и толщиной 3,5 мм, а также горелка Бунзена. Конец палочки окунают в пасту, полученную смешиванием соды с водой, и нагревают в пламени (операции повторяют несколько раз). Концом полученной таким образом сдовой палочки прикасаются к сухому анализируемому веществу и восстанавливают его в пламени, при этом сода предотвращает горение самой палочки. Обугленный конец вносят в воду, смывают с него уголь и нследуют металлы, как описано выше (восстановление на угле при помощи паяльной трубки). [c.38]

    Получение и гидролиз сульфида натрия. В промышленности N828 получают восстановлением сульфата натрия коксом. Взвесьте 3 г бозводного Na2S04 и 1 г древесного угля. Смесь разотрите в фарфоровой ступке и перенесите ее в фарфоровый тигель. Тигель поставьте на фарфоровый треугольник, закройте его фарфоровой крышкой и нагревайте в течение 20 мин. Охладите тигель, снова разотрите полученный продукт в фарфоровой ступке и перенесите его в стакан вместимостью 50 мл. Налейте 10—15 мл дистиллированной воды и хорошо перемешайте стеклянной палочкой. Отфильтруйте непрореагировавший уголь, а раствор оставьте для следующих опытои. [c.129]

    Эта система содержит твердую фазу (уголь) и газообразную (смесь паров СО2 и СО). Поскольку процесс восстановления СОг идет с поглощением тепла, т. е. является эндотермическим, то согласно принципу Ле Шателье нагревание системы сместит равновесие в сторону увеличения выходаСО, а ее охлаждение будет сдвигать равновесие влево. Изменение давления также окажет сущест- [c.185]

    Важнейший способ получения металлов пз руд основан на восстановлении их оксидов углем или СО. Если, например, смешать красную медную руду СпгО с углем и накалить, то уголь, восстанавливая медь, преврап1ается в оксид углерода (П), а медь выделяется в расплавленном сост(Зянии  [c.334]

    Электролиз является практически единственным способом получения важнейших металлов (А1, Mg). Существенное значение имеет электролиз раствора Na l с получением хлора, водорода и щелочи, а также электролитический способ производства КМПО4, Na lO, органических фторпроизводных и др. Электролиз имеет большое значение для получения таких важных для синтеза лекарственных веществ, как амины и спирты. Амины получают восстановлением соответствующих иитросоединений в присутствии катализаторов в спиртоводной среде. В качестве катодов применяют ртуть, свинец и уголь. Спирты получают при катодном восстановлении кислот, кетонов и альдегидов как в кислых, так и в щелочных растворах на ртути, меди и свинце. [c.209]

    В качестве катализаторов электродов топливных элементов используются металлы платиноюй группы, серебро, специально обработанные никель и кобальт и активированный уголь. На этих электродах уже при 25—100°С удается достичь высоких скоростей восстановления кислорода и окисления таких видов топлива, как водород, гидразин НгН4 и метанол СН3ОН, при относительно невысоких поляризациях. Топливные элементы, работающие при таких температурах, получили название низкотемпературных. Ионными проводниками в них могут служить водные растворы кислот, щелочей и солей. Чаще всего применяют раствор КОН, так как он имеет высокую электрическую проводимость и невысокую агрессивность по отношению ко многим металлам. [c.362]

    Пирометаллургия занимает ведущее место в металлургической промышленности. Суть метода заключается получении металлов из руд с помощью восстановителей при высоких температурах. В качестве восстановителей используют уголь, активные металлы, водород, метан, рксид углерода (II). Например, один из способов получения олова из оловянного камня (касситерита) ЗпОа заключается в восстановлении олова из оксида Зп(1У) углем  [c.143]

    Промышленное значение железа в эпоху бурного развития науки и техники особенно велико. Металлическое железо получают из кислородных руд восстановлением углем (коксом), оксидом углерода (И), водородом при высокой температуре. Такой процесс называют выплавкой. Сложность процесса выилавки железа состоит в том, что при температурах, которые дает горящий уголь, оно не плавится, а потому пе отделяется от сопутствующих примесей. Но при высокой температуре железо обладает способностью соединяться с углеродом (от 2 до 5% С), образуя чугун, который легко плавится при указанных температурах. Поэтому один из старейших способов производства железа из руды включает Две стадии первая — доменное производство чугуна из руды вторая — сталеплавильный передел чугуна, ведущий к уменьшению в металле содержания углерода и других примесей. [c.145]

    В качестве катализаторов электродов топливных элементов используются металлы платиновой группы, серебро, специально обработанные никель и кобальт и активированный уголь. На этих электродах уже при 25—100 °С удается достичь высоких скоростей восстановления кислорода и окисления таких видов топлива, как водород и гидразин N2H4, при относительно невысоких поляризациях. Топливные элементы, работающие при таких температурах, называют низкотемпературными. Ионными проводниками в них служат растворы КОН или Н3РО4, а также ионообменные мембраны. [c.412]

    Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода (И), водород, метан. Так, например, уголь и оксид углерода (П) восстанавливают медь из красной медной руды (куприта) uaO  [c.166]


Смотреть страницы где упоминается термин Восстановление на угле: [c.79]    [c.80]    [c.141]    [c.81]    [c.117]    [c.15]    [c.221]   
Курс аналитической химии Том 1 Качественный анализ (1946) -- [ c.93 ]




ПОИСК







© 2025 chem21.info Реклама на сайте