Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез естественный

    Наличие в каком-либо соединении необычного стабильного изотопа (сверх его естественного содержания, определяющегося распространенностью изотопа в природе) или радиоактивного изотопа позволяет проследить пути превращения этого соединения в присутствии большого числа других соединений, содержащих тот же элемент. Молекулы рассматриваемого соединения или, вернее, атомы элемента, входящего в это соединение, оказываются мечеными они легко определяются на фоне других, немеченых атомов того же элемента. Идею метода нетрудно понять на примере установления пути образования кислорода при фотосинтезе. [c.32]


    Естественно, что не было недостатка в попытках осуществить с помощью хлорофилла фотосинтез в лабораторных условиях, однако ни одна из этих попыток пока не принесла успеха. Между тем значение проблемы огромно, ее решение позволило бы производить заводским способом крахмал, сахар и другие пищевые продукты, получаемые ныне из растений, [c.304]

    Один из законов фотохимии, установленный Гротгусом в 1818 г., формулируется следующим образом лишь поглощенный свет является фотохимически активным. Отсюда следует, что в системе, проявляющей фотохимическую активность под действием видимого света, должно присутствовать окрашенное вещество. В процессе естественного фотосинтеза таким веществом является хлорофилл. [c.563]

    Часть солнечной энергии доходит до Земли в виде фотонов света (квантов) — дискретной электромагнитной энергии. Только 0,1—1,0% этой энергии используют фотосинтезирующие организмы. В течение года даже из этого количества усвоенной энергии в процессе фотосинтеза образуется 164 млрд. т органической массы. Аккумулированная в органических веществах энергия широко используется в микробиологическом биосинтезе. В него, естественно, включаются и другие виды энергии, которые используют предприятия микробиологической промышленности (электричество, топливо). Человек употребляет в пищу главным образом органическую массу, полученную в сельскохозяйственном производстве, которая составляет 5% всей продукции фотосинтеза. Огромные богатства органических веществ содержат леса. Их продукция рассматривается как перспективное сырье для микробиологической промышленности. [c.8]

    Источником получения разнообразных синтетических продуктов являются естественные запасы реакционноспособного углерода, содержащиеся в горючих веществах органического происхождения. Основная их масса накопилась в земной коре за прошедшие геологические эпохи в результате жизнедеятельности существовавших тогда растений и организмов, базировавшейся на процессах фотосинтеза органических соединений под воздействием солнечных лучей. В настоящее время запасы горючих веществ являются для человечества кладовой углерода и солнечной энергии, и эти богатства следует расходовать умно и бережливо. [c.10]

    При моделировании концентрации РК появляется возможность его контроля и сравнения с минимально допустимым уровнем для фауны и флоры рассматриваемого района. Изменение концентрации РК описывается по-разному для моделей каждого уровня. На наиболее простом уровне концентрация РК является функцией естественных природных процессов (фотосинтез, респирация и реаэрация) и распада органики (ВПК). Усложнение происходит, во-первых, за счет включения взаимодействия с дном реки (введение потребления кислорода наносами) и, во-вторых, за счет принятия во внимание питательных веществ, т.е., нитрификации аммония в азот. Распад поступающего ВПК приводит к увеличению потребления кислорода. [c.311]


    При применении токсических веществ, ослабляющих интенсивно протекающий процесс фотосинтеза или влияющих на количественное содержание хлорофиллов в клетках водорослей, происходит снижение потребления углекислоты и естественное под-щелачивание питательного раствора. Этот процесс протекает при старении культуры. [c.106]

    Отсюда следует, что б системе, проявляющей фотохимическую активность под действием видимого света, должно присутствовать окрашенное вещество. В процессе естественного фотосинтеза таким веществом является зеленый хлорофилл, а при взрыве смеси хлора с водородом — хлор. [c.333]

    Соотношение между компонентами, составляющими биосферу в каждый отрезок времени, сбалансировано. Органическое вещество, израсходованное животными, растениями, микроорганизмами, восполняется растениями в процессе фотосинтеза. Это равновесие может нарушаться в результате естествен ных случайных изменений условий среды (например, в результате геологических процессов, изменения климата и др.) или вследствие так называемого антропогенного воздействия (воздействия человека). В настоящее время вмешательство человека в биосферу весьма значительно и имеет тенденцию к дальнейшему росту. [c.9]

    Роль фотосинтеза в решении проблемы энергообеспечения рассмотрена в разд. Ш-В. Поскольку снабжение людей продовольствием в конечном итоге зависит от роста растений, фотосинтез играет ключевую роль и в производстве пищевых продуктов. Фотосинтез — это естественный процесс, посредством которого зеленые растения, водоросли и фотосинтезирующие бактерии используют солнечную энергию для стимулирования химических реакций. Углекислый газ и вода превращаются в результате этих реакций в органические молекулы типа строительных блоков, которые используются клетками растений, функционирующими как химические фабрики, удовлетворяющие нужды растения. Ежегодно 10 т углерода превращаются в органические вещества с помощью фотосинтеза, и выяснение механизма этого процесса остается важной целью исследований. Несмотря на быстрый прогресс в данной области (см. разд. 1И-В), мы все еще далеки от возможности воспроизвести процесс фотосинтеза в лаборатории. Тем не менее химики не теряют надежды создать систему искусственного фотосинтеза, которая позволит применить солнечную энергию для [c.42]

    Таким образом, естественный фотосинтез питается энергией излучения ближней инфракрасной области спектра благодаря образованию промежуточных продуктов, аккумулирующих эту энергию. Время жизни этих продуктов достаточно, чтобы дождаться второго фотона. Вторая порция поглощенной энергии добавляется к первой, так что суммарной энергии хватает на образование или разрыв химических связей в молекуле растения. Некоторые элементарные акты этой последовательности превращений осуществляются за время. [c.71]

    Источники углерода и энергии. Организмы, получающие энергию с помощью фотосинтеза или путем окисления неорганических соединений, способны в большинстве своем использовать СО2 в качестве главного источника углерода. Эти С-автотрофные организмы восстанавливают СОз- Все остальные организмы получают клеточный углерод главным образом из органических веществ. Последние, как правило, служат источниками как энергии, так и углерода частично они ассимилируются для построения клеток, частично окисляются для получения энергии. Из природных органических соединений на Земле количественно преобладают полисахариды-целлюлоза и крахмал. Структурные элементы этих полимерных соединений - молекулы глюкозы-могут использоваться очень многими микроорганизмами. Микроорганизмы, однако, способны использовать и все другие органические соединения, образующиеся естественным путем. [c.177]

    Из различий в спектрах поглощения зеленых водорослей, цианобактерий, пурпурных бактерий и зеленых бактерий можно заключить, что разные группы фототрофных организмов используют для фотосинтеза свет разных участков спектра. Это связано с условиями освещения в естественных местах обитания разных фототрофных организмов. Найденные различия используют дри получении накопительных культур некоторых фототрофных бактерий (см. рис. 12.13). [c.378]

    В настоящее время фотосинтез сложных веществ и аккумулирование этим путем солнечной энергии представляют собой стихийный, естественный процесс. Но недалеко уже то время, когда техника изменит это положение и человек вмешается в круговорот веществ на поверхности земного шара, используя избирательное действие фотонов на различные химические процессы, и при обычных температурах осуществит разнообразнейшие синтезы как простых, так и самых сложных к хрупких, богатых энергией атомных конфигураций. [c.114]


    Таким образом, путем фотосинтеза в растениях происходит накопление сложных органических веществ. Естественно, что растения в большей мере, чем животные, служат первоисточником получения органических веществ. [c.25]

    После установления Оактериального фотосинтеза, естественно, встал вопрос о роли различных доноров водорода в этом процессе. Вначале ван Киль предполагал так же. как это принято в настоящее время, что в оактериальном фотосинтезе сероводород или другие доноры водорйда играют ту же роль, что вода в процессе фотосинтеза зеленых растений, а шленно активированный на [c.23]

    Гибель планктона, при помоци которого идет фотосинтез, ухудшает естественный газообмен между атмосферой и океаном. [c.11]

    Весьма примечательно, что в природе не встречается таких зеленых растений, в которых не было бы каротиноидных пигментов [116]. Правда, при исследовании фотосинтеза используются бескаротиноидные мутанты, но в естественных условиях им едва ли удалось бы выжить. Каротиноиды защищают хлорофилл от разрушительного действия вырабатываемого под действием света молекулярного кислорода. Механизм этого защитного действия пока неясен. [c.53]

    Важными вопросами являются возможность перехода комплексонов и комплексонатов в сточные воды, вероятные последствия такого перехода и сроки естественного биологического разрушения хелантов. Прогнозирование последствий введения комплексонов в природные объекты в целом возможно. Например, как показали модельные опыты, накопление этилен-диаминди(2-гидроксифенилуксусной)кислоты способствует цветению ряски, и можно предвидеть, что в количествах, существенно превышающих ПДК, этот хелант может вызвать гипоксию водоемов. Однако в отдельных случаях причинно-следственная взаимосвязь введения комплексона и произведенного им эффекта не очевидна. Так, установлено, что нитрилтриацетат железа стимулирует рост фитопланктона в Женевском озере, а такие же добавки в прибрежной зоне другого озера Швейцарии, Грайфензее, подавляют фотосинтез [372]. Это необходимо учитывать и строго контролировать соответствие реальной концентрации комплексона его ПДК. В значительной мере такое соответствие гарантируется использованием в большинстве технологических процессов комплексонов на уровне микроколичеств. [c.506]

    В общем случае относительная важность поликетидов для различных типов организмов отчасти отражает относительную важность соответствующих видов ацил-КоА в их общем метаболизме. Например, распространенность различных ароматических полнке-тидов в высших растениях является следствием важности биосинтеза ароматических кислот как звена, соединяющего процессы фотосинтеза н лигнификации наличие в грибах ацетатных поликетидов отражает важность ацетил-КоА как регулятора их метаболической реакции на изменения окружающей среды преобладание пропнонатных поликетидов в актиномицетах, вероятно, связано с аналогичными специфическими процессами в их еще мало изученном промежуточном метаболизме. Синтез поликетидов часто Отражает степень использования организмом вторичного метаболизма как одного из механизмов регуляции его отношений со средой. В то же время под влиянием естественного отбора эти вторич- [c.411]

    Циклы восстановительного аминирования яблочной и щавелевоуксусной кислоты дают аминокислоты, необходимые для синтеза белков. Синтез липидов происходит по своей сложной биологической цепи. В заключение этого раздела следует отметить, что все современные сведения о фотосинтезе являются пока yry6d Йрйблйзкенными. Это вполне естественно потому, что биохимия фотосинтеза необычайно сложна. [c.743]

    Молекулярная биофизика естественно переходит в биофизику клетки, изучающую строение и функциональность клеточных и тканевых систем. Эта область биофизики является самой старой и традиционной. Ее главные задачи связаны сегодня с изучением физики биологических мембран и биоэнергетических процессов. Биофизика клетки включает изучение генерации и распространения нервного импульса, изучение механохимических процессов (в частности, мышечного сокращения), изучение фотобиологиче-ских явлений (фотосинтез, рецепция света, зрение, биолюминесценция). В этой области также применяются уже перечисленные экспериментальные методы." Биофизика клетки имеет дело с более сложными задачами и встречается с большими трудностями [c.21]

    Начальные стадии образованин горючих ископаемых являются лишь составной частью развития биосферы, т.е, геологической оболочки Земли, где протекает жизнь. Основоположником биогеохимии является В,И.Вернадский. Важнейшим естественным образованием биосферы является живое вещество (ЖВ). Именно оно является преобразователем мощного потока солнечной энергии и источником, из которого образовались многие виды горючих ископаемых. Живые организмы биосферы - высшие растения, фитопланктон, различные водоросли и бактерии получают в освещенной части биосферы солнечную энергию, производят все необходимые для жизни органические вешества из неорганических элементов фотосинтезом. [c.19]

    Для очистки сточных вод служат также окислительные пруды. Это естественные или искусственные неглубокие водоемы, в которых осуществляется деструкция органических веществ аналогично процессам самоочищения в природных водах. Очистные пруды могут быть обычными и с искусственной аэрацией. В не-аэрируемых прудах окисление органических загрязнений микроорганизмами происходит за счет растворенного в воде кислорода. Их малая глубина способствует хорошему прогреванию и освещенности воды солнечными лучами, в результате чего интенсивно развиваются планктонные водоросли и донные высшие растения. Растительные организмы питаются неорганическими продуктами микробного метаболизма и, в свою очередь, снабжают микроорганизмы кислородом, образующимся в процессе фотосинтеза. В последние годы водорослям отводится важная роль в процессах самоочищения водоемов, а в ряде стран проводятся исследования по выращиванию на сточиых водах водорослей родов lorella и S enedesmus с целью получения кормового белка и биологически активных веществ [35]. Аэрируемые пруды в 5 — 10 раз эффективнее обычных. Повышение количества растворенного в воде кислорода достигается с помощью механических аэрирующих устройств. [c.116]

    Почти все культуры водорослей во время роста проявляют естественную тенденцию к изменению pH среды. Большинства зеленых и еинезеленых водорослей при начальном росте предпочитают нейтральньге или слабощелочные условия среды. Если не ограничивать изменение pH питательного раствора путем введения буферных смесей, то в процессе культивирования водорослей pH среды может доходить в культурах до 10,5—11. Такое под-щелачивание среды в процессе роста объясняется интенсивно идущим процессом фотосинтеза, особенно у зеленых водорослей, и связыванием свободной углекислоты раствора (Успенская, 1966, Мейнелл, Мейнелл, 1967). [c.106]

    Водохранилища представляют собой водоемы, образованные вследствие подъема веды в реке при сооружении плотин по гидрохимической характеристике они близки к естественным озерам. В настоящее время лишь наканливается опыт прогнозирования гидрохимического режима водохранилищ, создаваемых в различных районах нашей страны. Изменения, происходящие с переходом от режима реки к режиму озера, в первой фазе существования водохранилища связаны с затоплением больших площадей и смывом при этом значительных масс растворимых органических и неорганических веществ, а также с новыми гидрологическими условиями — испарением, температурой воды, интенсивностью грунтового питания, возникновением стратификации и др. Поступление в воду больших количеств биогенных элементов (смыв с затапливаемых почв, сброс бытовых стоков и др.) при интенсивном прогреве воды на мелководьях создает условия для развития водорослей. В результате фотосинтеза может наблюдаться изменение газового режима водоема. [c.238]

    Все перечисленные выше фосфатиды обнаружены как у растений, так и у животных. В естественных условиях фосфатидная кислота вряд ли встречается в свободном виде. Ее присутствие в экстрактах может быть обусловлено разрушением фосфатидил-холина и фосфатидилэтаноламина под действием фосфолипазы В (см. стр. 321). Фосфатиды служат важными составными частями клеточных мембран. Обычно они содержатся в хлоропластах, митохондриях и микросомах. Хлоропласты особенно богаты фосфатидил-глицерином. Быстрое обновление глицеридпой части молекулы фосфатидилглицерина во время фотосинтеза позволяет предполагать, что этот фосфатид принимает участие в обмене веществ, а также служит структурным элементом хлоропластов. Бенсон, Уинтерменс и Уайзер [3] считают, что внутри хлоропласта фосфа-тидилглицерип может играть роль запасного углевода. [c.290]

    Дискутируется вопрос о месте первого в электрон-транспорт-ной системе фотосинтеза и о месте второго в электрон-транспорт-ной системе дыхания. Как видно из опытов, эти вещества по функциональным группам идентичны п-бензохинону, образующемуся в результате окисления гидрохинона. Не исключено, что гидрохинон в цитохромоксидазной системе и и-бензохинон в реакции Хилла действуют как аналоги естественных веществ. Выше были указаны примеры, когда при применении в системах вместо простых фенолов более сложных фенольных веществ из растений получались аналогичные результаты. Все это свидетельствует о том, что опыты с простыми экзогенными веществами приносят пользу в деле познания окислительно-восстановительных процессов црирод-ных фенольных веществ в организмах. Возникает вопрос, в чем конкретно состоит биологическое значение рассмотренных здесь систем. Еще в начале нашего века Палладии [26] высказал предположение, что фенольные вещества в растениях выполняют функции переноса водорода с субстратов дыхания на молед улярный кислород. Изложенные здесь факты являются экспериментальным подтверждением этого предположения. Обнаружено, в том числе и нами [2], что полифенолоксидаза концентрируется в наружных частях растений. Так как растения дышат поверхностью, то не исключено, что система полифенолоксидаза — фенольное вещество выполняет важную роль в питании растений кислородом. Как сле- [c.144]

    Такой разнобой в терминологии уже описанного и названного соединения, на наш взгляд, можно объяснить только тем, что большинство иностранных ученых замалчивало работы первых исследователей — Цвета и Любименко о связи хлорофилла и белка в живых листьях. И даже после признания в 30—40-х годах зарубежной наукой заслуг обоих русских ученых в только что вышедшей обстоятельной трехтомной монографии о фотосинтезе Рабиновича (1951—1959) мы не находим упоминания имени Цвета в связи с разбираемым вопросом, а естественный хлорофилл Любименко, как это ни странно, автор характеризует как гипотетический комплекс. [c.186]

    В результате не более чем 1,5 10 шл ежегодно поглощается растительными пигментами и таким образом может быть использовано для фотосинтеза. В естественных условиях энергетический выход фотосинтеза зеленых растений составляет величину порядка 2%- Это дает цифру 3-10 пал как вероятную величину ежегодного накопления энергии фотосинтезом, что отвечает образованию 3 10 т органического углерода. (Теплота сгорания органического вещества приблизительно составляет 10 ° шл на 1 m углерода, содержащегося в нвхМ.) Это согласуется с величиной, полученной из расчетов урожаев. [c.23]

    Естественнее всего предположить, что продуктами фотосинтеза являются углеводы, т. е. соединения с атомным отношением Н О == = 2 1. Тогда, детализируя уравнение (2.4), по.1учаем  [c.38]

    Из всех химических соединений, встречающихся в растениях, очевидно, единственным, необходимость которого для фотосинтеза ясна, является зеленый пигмент хлорофилла. Ингенхуз в 1779 г. установил, что лишь зеленые части растений улучшают воздух на свету. В тех случаях, когда красные, бурые или синие клетки обнаруживали способность к фотосинтезу, всегда удавалось доказать, что и они содержат хлорофи.м, хотя он маскировался каро-тиноидами или антоцианипами. Естественно поэтому, что попытки воспроизвести фотосинтез вне растения сосредоточивались на препаратах хлорофилла. Эти опыты дали отрицательные результаты, и мы посвятим лишь несколько строк их обсуждению. [c.72]

    Дхар и Рам [152] обнаружили в дождевой воде (йодным титрованием)- от 1,5 1О7З до 1 10-2% формальдегида, причем большие величины подучались после длинных периодов солнечного освещения. Они предположили, что фотохимическое образование формальдегида происходит или на уровне образования озона, или выше его (око-то 50 км над земной поверхностью), так как ни один из лучей с длиной волны < 290 M J. не может проникнуть ниже этого слоя. С точки зрения искусственного или естественного фотосинтеза, протекающего в обычных условиях, совершенно безразлично, могут или не могут образоваться следы формал ьдегида при освещении ультрафиолетовыми лучами. В оценке фотохимических реакций надо иметь в виду, что энергия, доставляемая одним квантом, особенно квантом ультрафиолетового света, значительно больше энергии активации, потребной для значительной части, если не для всех химических реакций. [c.88]

    В 1893 г. Бах [84] обнаружил, что раствор двуокиси углерода и уранилацетат реагируют на свету. При этом окислы урана выпадают в осадок, а двуокись углерода, по мнению Баха, может восстанавливаться до формальдегида. Теми же самыми сенсибилизаторами (солями уранила) пользовались Ушер и Пристли [90] и Мур и Уэбстер [1I5]. Последние авторы придавали особое значение коллоидальному состоянию сенсибилизатора. Они получили положительную реакцию на формальдегид в освещенных растворах карбонатов, содержащих соли урана и железа в коллоидном состоянии эти результаты объясняют, по мнению авторов, естественный фотосинтез, так как соединения коллоидного железа встречаются в хлоропластах. Помимо сомнений в правильности этих результатов, следует выяснить вопрос о том, что происходило с сенсибилизаторами . Оставались ли они в неизменном состоянии, играя, таким образом, роль настоящих катализаторов, или являлись восстановителями Конечно, быдо бы существенным успехом добиться восстановления двуокиси углерода солями урана или закисного железа, так как окислительно-восстановительные потенциалы этих веществ значительно ниже потенциала системы СОд—НаСО. Это восстановление будет только половиной фотосинтеза остается еще восстановить окисленный катализатор (например, ион окисного железа) водой, что должно повлечь выделение кислорода, как было в опытах с изоли-зованными хлоропластами. Однако Бауру и Ребману [118] при попытках повторения опытов Мура и Уэбстера не удалось подучить никакого образования формальдегида, щавелевой, глиоксилевой или муравьиной кислот, не говоря уже о выделении кислорода. [c.90]

    Двуокись углерода в течение нескольких часов пропускалась в виде пузырьков через освещенные сосуды, содержащие эти порошки в виде водных суспензий. Затем раствор отделялся от порошков и выпаривался. Получался смолистый осадок, дававший некоторые реакции на альдегиды и сахара (восстановление раствора Бенедикта, проба Молиша, проба Рубнера и образование оза-зонов). Карбонаты быстро теряли свою каталитическую активность Бэли объясняет это окислением кислородом, образованным при фотосинтезе (ни разу не делалось попытки прямого определения образования кислорода). Выход искусственных углеводов , полученных Бэли и Дэвисом [130], доходил до 75 лг за 2 часа в сосуде с поверхностью около 300 т. е. был приблизительно равен выходу естественного фотосинтеза равной площади, покрытой растительностью . Бэли и Худ [136] обнаружили, что скорость искусственного фотосинтеза возрастает между 5 — 31° и уменьшается между 31—41°, подобно скорости естественного фотосинтеза. [c.91]

    Отказываясь придавать значение данным Дхара с точки зрения фотосинтеза, мы должны принять во внимание не только опасность загрязнений и вообще их неудовлетворительную экспериментальную технику, но также и общее положение (сформулированное на стр. 88), что поскольку квантовые выходы были чрезвычайно малыми (порядка 10" или Ю ), постольку возможно было случайное образование следов органических веществ в результате фотоокислепия. Это приложимо не только к прямому действию ультрафиолетового света, но даже и к сенсибилизированным реакциям, происходящим при сравнительно небольших квантах видимого света. В одном случае на миллион абсорбционных актов два фотона могут попасть на соответствующую молекулу или две возбужденные молекулы могут столкнуться и обменяться энергиями, получив достаточно энергии для образования свободного атома или радикала. Случайности такого рода могут вызвать образование небольшого количества молекул формальдегида в карбонатных растворах, подвергнутых продолжительному освещению видимым светом. Отличительной чертой естественного фотосинтеза является накопление энергии с эффективностью, далеко превосходящей все объяснимое по статистическим соображениям. Пока мы не сумеем в этом отношении подражать природе, мы не имеем права говоритъ об искусственном фотосинтезе , даже если бы удалось получать следы формальдегида продолжительным освещением растворов карбонатов. [c.94]

    Исходя из гипотезы ван Ниля, можно сделать заключение, что механизмы фоторедукции адаптированных водорослей и пурпурных бактерий несколько отличаются друг от друга. Первые содержат обычно хлорофилл, на котором, вероятно, процесс адаптации не отзывается. Таким образом, первичный продукт окисления воды ОН " -, вероятно, одинаков и в нормальном и в адаптированно>г фотосинтезе. Разницу в конечной стадии окисления, как предполагает Гаффрон (глава VI), следует отнести за счет активации гидрогеназной системы с одновременной инактивацией ферментной системы Ед, выделяющей кислород. Идентичность первичного процесса у адаптированных и нормальных зеленых водорослей подтверждается наблюдениями Рике и Гаффрона [34]. Эти исследовате.1И отмечают, что максимальный квантовый выход ц скорость насыщения на мигающем свету одинаковы прл фоторедукцин у адаптированных водорослей и при фотосинтезе у неадаптированных водорослей. С другой стороны, у пурпурных бактерпй первичный окисленный продукт ОН , естественно, не способен превратиться в свободный кислород. В данном случае аэробные условия могут вызвать лишь полное прекращение синтеза (если они ведут к окислите.1ьной инактивации гидрогеназы), но не могут вызвать переход к обычному фотосинтезу (с водой в качестве восстановителя), как это получается при исчезновении адаптации у зеленых водорослей. [c.175]


Смотреть страницы где упоминается термин Фотосинтез естественный: [c.554]    [c.375]    [c.4]    [c.338]    [c.340]    [c.357]    [c.104]    [c.28]    [c.32]    [c.51]    [c.126]    [c.24]    [c.70]   
Фотосинтез 1951 (1951) -- [ c.91 , c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2024 chem21.info Реклама на сайте