Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дифосфаты ферментативное

    Спиртовое брожение. — Способность ферментов катализировать многие другие реакции, кроме перечисленных выше, прекрасно иллюстрируется тщательно изученной последовательностью реакций ферментативного расщепления гексоз до этилового спирта и двуокиси углерода. Ключевыми промежуточными продуктами являются /)-фруктозо-6-фосфат и 0-фруктозо-1,б-дифосфат, образующиеся под действием фермента из сахара и донора фосфата. Расщепление фруктозо-1,6-дифосфата идет через обратимую альдолизацию с переносом водорода от С -гидроксила к третьему углеродному атому, причем образуются фрагменты I и II  [c.722]


    Кинетические параметры (измеренные по ферментативной активности) при варьировании концентрации глюкозо-1,6-дифосфата и глю-козо-1-фосфата зависят от соотношения концентраций этих компонентов. Величина Кт для глюкозо-1-фосфата изменяется от 2,4-10 М до 4,8-10 М. для глюкозо-1,6-дифосфата — от 8,3-10 М. до 7,6-10 М. Кинетические параметры зависят также от того, находится ли фермент в активированном или неактивированном состоянии. Активацию фосфоглюкомутазы проводят путем предварительной инкубации в среде, содержащей ионы Mg + и имидазол (или гистидин). [c.227]

    Глюкозо-1,6-дифосфат может быть ферментативно синтезирован с помощью фосфоглюкомутазы в присутствии фруктозо-1,6-дифосфата. Фосфоглюкомутаза катализирует реакцию  [c.231]

    Среди указанных эффекторов наиболее важное значение для регуляции ферментативной активности имеют ингибиторы (АТФ, цитрат) и активаторы (фруктозо-6-фосфат, фруктозо-1,6-дифосфат, фруктозо- [c.238]

    Фосфорилирование фермента не отражается на ферментативной активности при pH 8,0. Однако фосфорилирование белка оказывает влияние на аллостерические свойства фермента повышается чувствительность к ингибированию АТФ и цитратом, но снижается чувствительность к активирующему действию АМФ и фруктозо-2,6-дифосфата. Предполагают, что фосфорилирование индуцирует конформацион-ные изменения, способствующие смещению равновесия между двумя формами фермента активной и неактивной. При связывании АТФ в ингибиторном центре также происходит смещение равновесия в сторону неактивной конформационной формы фосфофруктокиназы. [c.238]

    Активность фосфофруктокиназы можно измерить двумя методами по скорости образования фруктозо-1,6-дифосфата (I) или АДФ (И). В обоих случаях количество продукта ферментативной реакции определяется по окислению НАДН. [c.239]

    Анализ чистоты препарата фруктозо-1,6-дифосфата. Изучение его ферментативного расщепления. Определение константы равновесия реакции. Влияние температуры и времени инкубации. [c.503]

    Прежде чем обсуждать свойства и функции нуклеиновых кислот, рассмотрим аденозинфосфаты. Монофосфат (АМФ) аденозина вступает в ферментативную реакцию с неорганическим фосфатом и сначала образуется аденозин-5 -дифосфат (АДФ), а затем аденозин-5 -трифосфат (АТФ)  [c.730]

    По схеме ретроальдольного распада протекает ферментативное расщепление 1,6-дифосфата )-фруктозы при гликолизе (см. гл. 13). [c.104]

    Одновременно часть фруктозо-дифосфата путем ряда ферментативных превраш,ений и реакций снова дает цикл поглощения СО . В целом на фиксацию одной молекулы СОг надо затратить 3 молекулы АТФ и 2 молекулы ЫАОФН. [c.344]

    Расщепление фруктозо-1,6-дифосфата на две фосфотриозы катализирует альдолаза (КФ 4.1.2.13). При этом образуется глицеральдегид-3-фосфат и диоксиацетонфосфат. Альдолаза мышц не требует для проявления ферментативной активности ионов металлов или каких-либо кофакторов. При исследовании превращения фруктозо-1,6-дифосфата в качестве источника альдолазы используют диализованные экстракты мышц. В процессе диализа из экстракта удаляются компоненты адени-ловой системы НАД и неорганический фосфат, в отсутствие которых становится невозможным дальнейшее превращение глицеральдегид-З-фосфата под влиянием глицеральдегид-З-фосфатдегидрогеназы. Альдолаза относительно термостабильна. Ферментативное расщепление фруктозо-1,6-дифосфата обратимо, положение равновесия с повышением температуры смещается в сторону образования фосфотриоз, константа равновесия при этом возрастает. [c.63]


    Фруктозо-1,6-дифосфатаза (КФ 3.1.3.11) катализирует расщепление фруктозо-1,6-дифосфата на фруктозо-6-фосфат и неорганический фосфат. Фермент локализован в гиалоплазме, поэтому в качестве источника используют безмитохондриальный гомогенат печени крысы. Для проявления ферментативной активности необходимы ионы или Мп , оптимум водородного показателя сильно зависит от концентрации активирующих ионов и природы буфера. В глициновом буфере в присутствии Mg2+ максимальная скорость наблюдается при pH 9,2. [c.66]

    Дезоксинуклеотнды (IV и V) с очень малым выходом могут быть получены при гидролизе ДНК, причем при химическом гидролизе образуются 5 -замещенные фосфаты и 3 -, б -дифосфаты, а при ферментативном гидролизе могут быть получены любые монофосфаты. Для получения пиримидиновых дезоксинуклеотидов можно пользоваться и ферментативным, и химическим гидролизом, для получения производных пуринового ряда обычно только ферментативным. [c.216]

    Второй компонент козимазы — трифосфопиридиннуклеотид (ТПН) чрезвычайно близок по структуре к ДПН. Кислый и щелочной гидролиз. ТПН дает результаты, указывающие на то, что структура этого соединения соответствует ДПН, в молекуле которого находится один дополнительный остаток фосфорной кислоты. Для определения положения этого остатка ТПН подвергался ферментативному гидролизу, который привел к образованию дифосфата аденозина, не являющегося АДФ. Гидролиз этого дифосфата в присутствии нуклеотидазы змеиного яда дает аденозин-2-фосфат. Отсюда следует, что дополнительная фосфатная группа ТПН находится у С(2>—рибозного остатка аденозина и строение ТПН выражается формулой ( XVII). [c.236]

    Это было достигнуто изучением гидролиза ДНК в различных условиях. Ферментативный гидролиз ДНК в присутствии фосфодиэстеразы змеиного яда дает 5 -фосфаты дезоксинуклеозидов (I). Напротив, при кислотном гидролизе ДНК удалось выделить 3, 5 -дифосфаты пирими-динзедоксинуклеозидов (П). [c.247]

    Подобно фруктозо-1,6-дифосфат—альдолазе из животных тканей, большое число других альдолаз также инактивируется боргидридом натрия в присутствии субстрата. Этот тип альдолаз ( класс I ) не требует металлов и не ингибируется ЭДТА. В то же время альдолазы бактерий и грибов ингибируются ЭДТА и содержат в активных центрах Металл (обычно 2п +). Альдолазы этого типа ( класс II ) не инактивируются боргидридом натрия в присутствии субстрата. Читателю предлагается подумать о механизме действия этих ферментов и о роли металла в ферментативном процессе. [c.165]

    Эти синтетические достижения обеспечили возможность прямой идентификации 5 -дезоксинуклеотидов, образующихся в результате ферментативного гидролиза ДНК, который стал возможен в результате работ Клейна и Танхаузера [14]. Эти же исследователи определили структуры З -дезоксинуклеотидов, полученных из ДНК при ферментативном переваривании ДНК нуклеазой микрококков (23). Были синтезированы также 3, 5 -дифосфаты дезоксицити-Дина и дезокситимидина [24] и использованы для доказательства [c.39]

    Кофермент А принимает участие в биологической активации и переносе ацетильных групп. Структура кофермента (70) была установлена Липманом и сотр. [61] в результате проведения серии специфических ферментативных гидролизов. Так, обработка фосфатазой кишечника приводила к образованию аденозина, пантетеина и 3 моль фосфата. Положение фосфатных групп определяли после проведения более специфичных деградаций. Так, после обработки нуклеотидазой, специфически расщепляющей нуклеотид 3 -фосфа-ты, был получен дефосфокофермент А и 1 моль ортофосфата. Пирофосфатаза, с другой стороны, вызывала образование адено-зр.н-3, 5 -дифосфата (известное соединение) и пантетеин-4 -фосфата. Положение фосфатной группы в последнем соединении было установлено путем его сравнения с синтетическим образцом известной структуры. [c.610]

    Будущие исследования дадут точный ответ на вопрос о механизме световой стадии фотосинтеза, сопровождающейся выделением О2 из воды и включением электрона воды во второй темновой процесс фотосинтеза. Несомненно одно, что хлорофиллу в этом процессе принадлежит главная роль. На темновой стадии фотосинтеза проходят более сотни ферментативных химических реакций, каждая из которых вызывается собственным ферментом. На темновой стадии фотосинтеза важнейшую роль играют, кроме ферментов, такие биомолекулы, как НАДФ, АТФ, рибулозо-1,5-дифосфат и др. Химически неактивный (как говорят биохимики, холодный ) электрон воды превращается в химически активный ( горячий ) электрон восстановленной формы НАДФ  [c.741]

    Дифосфорный эфир тиамина широко распространен в животном и растительном мире [318. Помимо него, в различных растительных и животных тканях обнаружены тиаминтрифосфат [319—321 ] и тиаминмонофосфат [З О—321 ]. Трпфосфорный эфир тиамина не обнаруживает коферментных свойств, однако он быстро приобретает каталитическую активность благодаря легкости ферментативного гидролиза в дифосфат [322]. [c.418]


    Дезоксирибонуклеотиды образуются в результате восстановления соответствующих рибонуклеотидов на уровне дифосфатов (для некоторых прокариот описано подобное превращение на уровне трифосфатов). Синтез специфического для ДНК нуклеотида — тимидиловой кислоты — происходит путем ферментативного метилирования дезоксиуридиловой кислоты. [c.91]

    Ферментативные пути, ведущие к синтезу пентозофосфатов, уже формировались в окислительном пентозофосфатном пути. Для восстановительного пентозофосфатного цикла уникальными являются два фермента, не участвующие в других метаболических путях фосфорибулокиназа и рибулозодифосфаткарбоксилаза. Первый из них связан с активированием молекулы акцептора путем вторичного фосфорилирования, а второй катализирует реакцию акцептирования рибулозо-1,5-дифосфатом молекулы СО2 и последующее гидролитическое расщепление образовавшейся гексозы на 2 молекулы 3-ФГК, одна из которых в карбоксильной группе содержит углерод из СО2. [c.294]

    Такова биосинтетическая часть цикла, ведушая к фиксации СО2 и образованию из нее молекулы гексозы. Однако чтобы функционировал этот механизм, необходимо постоянное воспроизведение молекул — акцепторов СО2. Остальные ферментативные реакции цикла служат для регенерации акцептора СО2 — рибулозо-1,5-дифосфата и катализируются ферментами, большинство из которых функционирует в окислительном пентозофосфатном пути (ферменты Фд—Ф13 на рис. 77). Суммарное уравнение восстановительного пентозофосфатного цикла можно изобразить следующим образом  [c.296]

    Подподкласс 4.1.2 — альдегидлиазы — ферменты, катализирующие разрыв С—С- вязи, сопровождающийся возникновением альдегидной группы. Например, в цепи ферментативных реакций, ведущих к превращению глюкозы в трехуглеродные фрагменты, разрыв шестиуглеродной цепи происходит на стадии превращения фруктозо-1,6-дифосфата в 3-фосфоглицериновый альдегид и дигидроксиацетон-фосфат по реакции [c.146]

    Фосфорнокислый эфир глицеринового альдегида связывает молекупу фосфорной кислоты, превращаясь в 1,3-дифосфат гидратной формы глицеринового альдегида, который дегидрируется с образованием 1,3 дифосфата глицериновой кислоты. Присоединение второй молекулы фосфорной кислоты к фосфату глицеринового альдегида, по-видимому, необходимо для практически одновременно идущего дегидрирования. Образовавшийся 1,3-дифосфат глицериновой кислоты, отдавая остаток фосфорной кислоты, находившийся при карбоксильной группе, переходит в 3-фосфат глицериновой кислоты. Далее 3-фос-фат под действием фермента фосфоглицеромутазы изомеризуется в 2-фосфат глицериновой кислоты, который действием фермента енолазы дегидратируется и превращается в фосфат енольной формы пировиноградной кислоты, о соединение, теряя фосфатный остаток, превращается в пировиноградную кислоту, дающую уксусный альдегид и СО,. Уксусный альдегид подвергается ферментативному гидрированию и превращается в этиловый спирт. [c.216]

    Прежде чем заняться рассмотрением отдельных ферментативных этапов гликолиза, попробуем охарактеризовать этот процесс в более общем плане. Расщепление шестиуглеродной молекулы глюкозы на две трехуглеродные молекулы пирувата совершается при участии десяти ферментов. Все они были выделены в чистом виде из разных видов организмов и тщательно изучены. Первые пять этапов составляют подготовительную стадию гликолиза (рис. 15-2). В этих ферментативных реакциях глюкоза фосфорилируется за счет АТР сначала в положении 6, а затем в положении 1 с образованием фруктозо-1,6-дифосфата, который расщепляется на две молекулы трехуглеродного соединения—глицераль- [c.444]

    Внимательный читатель, рассматривая пути гликолиза и глюконеогенеза, представленные на рис. 20-2, неизбежно должен задать себе один очень непростой вопрос. На этих противоположно направленных метаболических путях между глюкозой и пируватом имеются три пункта, в которых ферментативные реакции катаболического направления заменены в анаболическом пути другими, обходными реакциями. Фосфофруктокиназа, например, катализирует фосфорилирование фруктозо-6-фосфата за счет АТР, а в глюконеогенезе ей соответствует фруктозодифосфатаза, катализирующая обходную реакцию-гидролиз фруктозо-1,6-дифосфата, в результате которого и образуется фруктозо-6-фосфат. Запишем эти две противоположно направленные реакции  [c.611]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    Фруктозо-1,6-дифосфат-альдолаза дрожжей 80 000 40 000 2 D/M Диссоциация на полипептидные цепи обратима, сопровождается реактивацией. Ион цинка не нужен для стабилизации димерной структуры фермента, но необходим для ферментативной активности 36 [c.392]

    Далее в темновом процессе идет (под влиянием энзима II) связывание углекислоты и воды 1,5-дифосфатрибулозой с образованием фосфата глицериновой кислоты, которая восстанавливается в 3-фосфат глицеринового альдегида. Последний под влиянием энзима III изомеризуется в фосфат диоксиацетона, ферментативная альдолизация которого дает 1,6-дифосфат фруктозы— исходный материал для построения молекул ди- и полисахаридов, а также для регенерации 1,5-дифосфата рибозы. Упрощенная схема фотосинтеза приведена ниже. [c.323]

    Первые четкие данные о механизме ферментативного синтеза РНК были получены Очоа и его сотрудниками в 1955 г. [98, 153— 155]. Они изолировали из Azotoba ter vinelandii фермент, катализирующий синтез высокомолекулярных рибополинуклеотидов из нуклеотид-5 -дифосфатов, сопровождающийся выделением ортофосфата. Реакция обратима и требует наличия ионов магния. Равновесие в этой реакции достигается, когда 60—80% нуклеозиддифосфатов уже использовано для синтеза. Реакцию мон но написать так  [c.252]

    Очевидно, что в дополнение к регуляторным механизмам, которые можно предсказать на основании законов химической кинетики интегрированной системы, живая природа разработала специфические механизмы ферментативного контроля. Прежде чем перейти к обсуждению таких механизмов, отметим, что скорость определенной последовательности реакций будет зависеть от доступности субстратов и кофакторов соответствующих ферментов. Как мы видели, изучение процесса гликолиза началось с наблюдения, что распад глюкозы под действием дрожжевого сока быстро замедлялся и прекращался совсем, но потом возобновлялся, если в реакционную смесь добавляли ортофосфат. В другом случае гликолиз не протекал дальше образования фруктозо-1,6-дифосфата без добавления АДФ именно таким способом Гарден и Йонг впервые обнаружили АДФ. [c.53]

    Продуктом этой реакции является только Ь-а-глицерофосфат. Это означает, что фермент способен асимметрически атаковать химически идентичные оксиметильные группы глицерина, ибо в противном случае должна была бы образоваться смесь Ь-а- и В-а-глицерофосфата. В полном соответствии с этим 1-С -глицерин, образующийся ферментативным путем из 3,4-С -глю-козы, превращается в 3,4-С -фруктозо-1,6-дифосфат, как показано иа фиг. 68. [c.205]


Смотреть страницы где упоминается термин Дифосфаты ферментативное: [c.984]    [c.226]    [c.321]    [c.311]    [c.138]    [c.85]    [c.381]    [c.368]    [c.137]    [c.262]    [c.467]    [c.286]    [c.707]   
Определение анионов (1982) -- [ c.419 ]




ПОИСК





Смотрите так же термины и статьи:

дифосфат



© 2025 chem21.info Реклама на сайте