Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полупроводники, определение кремния

    Такие типичные полупроводники, как кремний и германий, уже при комнатной температуре обладают некоторой проводимостью, хотя она приблизительно в 10 раз меньше, чем у металлов. Хотя при нагревании увеличиваются тепловые колебания ядер атомов, но этот эффект с избытком компенсируется увеличением количества электронов в зоне проводимости. Таким образом, в противоположность металлам проводимость полупроводников растет с повышением температуры. Электроны преодолевают запрещенную зону не только при тепловом воздействии, но и при облучении светом определенной длины волны. Такое явление называется фотопроводимостью. [c.203]


    Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка 4,4 кДж/моль способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах кремния и германия примесные атомы мышьяка, сурьмы и золота, обычно называемые донорными примесями. Для получения полупроводника с определенной концентрацией носителей (электронов или дырок) необходимо, чтобы количество собственных переносчиков тока в кристалле было примерно на два порядка ниже. [c.89]

    Из сказанного следует, что какова бы ни была предыдущая обработка образцов германия и кремния, их поверхностный потенциал постепенно принимает вполне определенное для данной среды значение. Время установления равновесия, т. е. постоянного значения ф , может очень сильно колебаться в зависимости от окружающей среды, температуры и предыдущей обработки кристалла, однако при температурах порядка 400° К оно редко превышает 2—100 часов. Поэтому для поддержания постоянного значения поверхностного потенциала совершенно необходимо, чтобы кристалл полупроводника находился в неизменной по своему химическому составу атмосфере. [c.209]

    Пример. Определение следовых количеств фосфора в иоде имеет важное техническое значение при получении кремния высокой чистоты, применяемого в качестве полупроводника, из тетраиодида кремния. Так же как фосфор, иод существует в природе только в виде одного изотопа. Изотоп ксенона, образующийся при облучении иода нейтронами, распадается с периодом полураспада 25 мин, а образующийся из фосфора изотоп серы — с периодом полураспада 14,3 сут. Через 24 ч после облучения активность иода составляет 10 исходной величины, и на фоне активности фосфора ею можно пренебречь. [c.389]

    НИИ. в определенных условиях атомы примесей могут ионизироваться, существенно изменяя свойства кристалла. В качестве примера рассмотрим состояние примесных атомов алюминия и фосфора в кристаллах кремния. Кремний принадлежит к классу полупроводников и имеет ковалентную кристаллическую решетку типа алмаза (рис. 33), в которой каждый атом связан с четырьмя соседними атомами вр -гибридными электронными облаками. [c.89]

    Если же ширина запрещенной зоны относительно невелика, то при сообщении твердому телу определенного количества энергии часть его электронов может переброситься из полностью заполненной валентной зоны в зону проводимости и принять участие в переносе тока. Подобные вещества называют собственными полупроводниками. Так, у типичных собственных полупроводников германия и кремния ширина запрещенной зоны при ОК соответственно составляет 0,75 и 1,21 эВ (73 и 137 кДж/моль). [c.85]


    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    Рассмотрим влияние химически адсорбированного кислорода и паров воды на полупроводниковые свойства германия. Окисленная поверхность германия, содержащая оксид и гидроксид, проницаема для водных паров. На поверхности раздела между германием и оксидным слоем молекулы воды отдают электроны германию и образуют Н+-ИОНЫ, а гидроксильные группы связываются с поверхностными атомами германия. Процесс образования Н+-ИОНОВ резко возрастает при большой концентрации дырок вблизи поверхности. При этом энергетические уровни непосредственно под поверхностью полупроводника настолько искажаются, что, например, приповерхностные участки базовой области германиевого триода от эмиттера до коллектора могут превращаться в материал л-типа и базовый слой окажется зашунтированным. Очевидно, окончательные этапы изготовления прибора должны проходить в сухом воздухе и р—/г-переходы должны быть герметизированы. В оксидном слое у поверхности раздела с полупроводником Н+-ионы способны перемещаться. В определенных условиях Н+-ионы захватывают электроны из объема германия, уменьшая тем самым число свободных электронов. При этом изменяются объемный заряд в полупроводнике, проводимость и другие электрические свойства. Подобные процессы происходят и на кристаллах кремния. [c.311]

    Для кремния данные по межфазной энергии 51 — 51, нам не известны. Поэтому для расчета атг кремния использовали определенный нами коэ( ициент перехода для германия — 1,24, так как по своим свойствам кремний во многом напоминает германий (оба полупроводники, тип структуры тот же, плавятся с уменьшением объема и т. д.). [c.9]

    В настоящее время большое значение имеет определение малых количеств примесей кислорода, бора, углерода, азота в чистых металлах и полупроводниковых материалах. Активационный анализ позволяет решить и эту проблему. Так, определение кислорода в металлах и полупроводниках может быть осуществлено при облучении в ядерном реакторе в присутствии металлического лития с чувствительностью до 10 г [32], при бомбардировке а-частицами с энергией 40 Мэе на циклотроне — до 10 г [33], при бомбардировке частицами Не с энергией 7,5 Мэе на циклотроне — до 10" % [34]. Бор в кремнии определяют при облучении на циклотроне протонами с энергией 20 Мэе с чувствительностью до 3-10" % [35]. Углерод и азот определяют при бомбардировке заряженными частицами с чувствительностью— 10" % [24—27]. [c.14]

    При более детальном рассмотрении можно показать, как от вида атомов примесей, их валентности и характера размещения в кристалле зависит тип и величина проводимости и многие другие свойства полупроводников. Зная, каким образом примеси влияют на свойства полупроводников, можно получать полупроводники с заданным сочетанием свойств, сначала более тщательно очищая полупроводники от примесей, а затем вводя в них необходимые примеси в определенных количествах. При этом первоначальная очистка должна быть очень высокой. Например, для кремния или германия общее содержание примесей должно быть уменьшено до —10 %. Такая степень очистки стала возможной в результате разработки новых методов ее метода многократной кристаллизации из расплава путем последовательного расплавления кристалла и вытягивания из расплава нового монокристалла (рис. 52) и метода зонной плавки (с. 344). [c.146]


    При анализе кремния и его неорганических соединений обращают главное внимание на определение индивидуальных примесей, для чего предложены разнообразные методы. Однако для быстрой оценки чистоты слитка, без идентификации носителей заряда, используется эффект Холла, позволяющий определять в полупроводниковом элементе до 10 % суммы примесей. Следует только учитывать, что при достаточно высоком содержании примесь может находиться в монокристалле не пол ностью в виде твердого раствора. В этом случае эффект Холла будет по казывать пониженное содержание примесей в полупроводнике [21]. [c.35]

    Проведенные расчеты показывают, что этот новый материал является полупроводником с запрещенной зоной с прямыми оптическими переходами, подобный арсениду галлия. В кристаллической структуре все его атомы занимают определенные положения. Однако в отличие от арсенида галлия атомы бакиболов колеблются хаотично. Это беспорядочное поведение в определенной степени делает их похожими на аморфный кремний - компонент недорогих солнечных батарей. Специфический беспорядок в упорядоченной структуре С50 еще предстоит исследовать, но ожидается, что на нем может быть основан соверщенно новый тип полупроводников. [c.152]

    Наличие определенных примесей и дефекты кристаллической структуры полупроводников значительно влияют на их электрические свойства. Например, небольшая добавка бора к кремнию (один атом бора на 10 атомов кремния) приводит к многократному увеличению проводимости. [c.192]

    С—РЬ с увеличением размеров атомов уменьшается притяжение к ядру наружных электронов. Поэтому, если между атомами углерода устанавливаются прочные ковалентные связи, то уже между атомами кремния эти связи менее прочны. За счет энергии теплового движения эти связи нарушаются, наружные электроны освобождаются и начинают перемещаться по веществу. При определенных условиях у германия возникает электронная проводимость и он становится полупроводником. У олова и свинца способность электронов отрываться от их атомов еще более возрастает, а поэтому у этих элементов усиливаются металлические свойства. [c.453]

    Помимо прикладного значения результаты количественного анализа весьма важны при исследованиях в области химии, биохимии, биологии, геологии и других наук. В качестве доказательства рассмотрим несколько примеров. Представления о механизме большинства химических реакций получены из кинетических данных, причем контроль за скоростью исчезновения реагирующих веществ или появления продуктов реакции осуществлялся при помощи количественного определения компонентов реакции. Известно, что механизм передачи нервных импульсов у животных и сокращение или расслабление мышц включают перенос ионов натрия и калия через мембраны это открытие было сделано благодаря измерениям концентрации ионов по обе стороны мембран. Для изучения механизма переноса кислорода и углекислого газа в крови понадобились методы непрерывного контроля концентрации этих и других соединений в живом организме. Исследование поведения полупроводников потребовало развития методов количественного определения примесей в чистых кремнии и германии в интервале 10 —10-1"%. Пд содержанию различных микровключений в образцах обсидиана можно установить их происхождение это дало возможность археологам проследить древние торговые пути по орудиям труда и оружию, изготовленным из этого материала. В ряде случаев количественный анализ поверхностных слоев почв позволил геологам обнаружить громадные залежи руд на значительной глубине. Количественный анализ ничтожных количеств проб, взятых с произведений искусства, дал в руки историков ключ к разгадке материалов и техники работы художников прошлого, а также важный способ обнаружения подделок. [c.12]

    Измерение больших импульсных мощностей в технике сверхвысоких частот — сложная проблема. Речь идет о сотнях тысяч и даже миллионах ватт. Обычные калориметрические измерения неудобны вся измеряемая мощность поглощается приборами. Это значит, что СВЧ генератор временно отключается от полезной нагрузки. Кроме того, калориметрические измерения в силу своей индукционности сообщают данные о средней, а не о импульсной мощности. Этих недостатков лишен вышеупомянутый прибор. Принцип его действия прост. В волноводе, по которому распространяется большая сверхвысокая мощность, создается сильное электрическое поле. Если в электрическом поле поместить полупроводник (германий, кремний или полупроводниковое соединение), то в результате безынерционного разогрева электронов сопротивление полупроводника изменится на вполне определенную величину. По ней можно точно судить о напряженности поля, а следовательно, и о СВЧ мощности. Прибор на горячих электронах в отличие от калориметрического позволяет производить замеры мощности при работе генератора на полезную нагрузку. [c.520]

    Вора определение в кремнии. Кремний, используемый для изготовления полупроводников, может быть загрязнен примесью бора. [c.25]

    Добавляя к кристаллу определенные примесные атомы, можно получить полупроводник, в котором электроперенос осуществляется за счет только электронов (л-тип) или только дырок (р-тип). Если к кристаллу кремния добавить атомы элементов V группы периодической системы, то можно получить проводимость -типа. Дримеси, увеличивающие число свободных электронов в полупроводнике, именуются донорными. Если в кристалл кремния ввести примесные атомы элементов П1 группы, то будет иметь место проводимость р-типа. Такие примеси называются акцепторными. [c.9]

    Как правило, колориметрическому определению бора мешают присутствие окислителей (нитраты, хроматы, перекись водорода), разрушающих красители, фтор-ион, образующий комплексное соединение с бором [91], а также некоторые элементы, такие, как железо, никель, марганец, мель, хром, кобальт, алюминий, ванадий, титан, молибден, цирконий, олово, мышьяк. Влияние окислителей устраняют восстановлением их гидразином, фтор-ион связывают добавлением двуокиси кремния. В литературе имеется обзор методов определения бора с применением дистилляции, ионного обмена, электролиза с ртутным катодом и определения в видимой и УФ-обла-сти спектра с применением флуорометрии, спектроскопии, полярографии и амперометрического титрования в урановых материалах, полупроводниках, сталях и цвет ных сплавах [107, 108]. Подробно методы отделения ме- тающих примесей изложены в п. 2 гл. I. [c.49]

    Велики технологические трудности. Опыт по получению пленок элементарных полупроводников — германия и кремния — показы вает, что для получения пленки определенного контролируемого ти па проводимости необходим высокий вакуум (10 —10 мм рт. ст.) Полупроводниковые пленки чрезвычайно чувствительны к загряз нениям при нанесении, так как эти примеси и будут в итоге опреде лять проводимость пленки. Поэтому в данном случае наилучшим методом испарения будет бестигельный, с помощью электронной бомбардировки. [c.164]

    Создавая с помощью фотоспособа и травления (по аналогии с печатными схемами) определенный рисунок из двуокиси кремния на поверхности полупроводника, можно проводить селективную диф- [c.185]

    Для определения состава слоев, присутствующих в. зоне контакта кремний — алюминий, измеряют интенсивность р-компо-ненты излучения, прошедшей через пластину полупроводника толщиной 250—350 мкм и слой диэлектрика, отразившейся от металла и обратно прошедшей через слой и полупроводник. Для увеличения чувствительности измерения выполняют при угле падения света на полупроводник, равном его углу Брюстера (6 = агс1д/2 ), при котором достигаются наименьшие потери энергии р-поляризованного излучения при отражении его на границе воздух — полупроводник и наибольший угол отражения излучения от металла (для 51 в средней ИК-области /21 = 3,42 и соответственно 0 16°). [c.154]

    Для оценки влияния примесных атомов на электропроводность полупроводника необходимо определить изменение полной потенциальной энергин системы при переходе одного электрона с примесного уровня в зону проводимости. Эта величина называется энергией активации донорных примесей —А до и для ее расчета следует воспользоваться методами, которые были применены в 8 при определении ширины запрещенной зоны —Ниже мы не пойдем по этому пути, а просто покажем, что энергия акти-фВации донорных примесей не может быть большой отрицательной величиной. Для этого прибегнем к следующим рассуждениям. Энергия ионизации атомов элементов, применяющихся в качестве донорных примесей, находятся в пределах 4—10 эв (см. табл. 1). При отрыве электрона, находящегося на первой возбужденной орбите, необходимо затратить энергию, в 2—4 раза меньшую, чем энергия ионизации, т. е. 1—5 эв. Такой результат мы получаем на основании формулы (44), при выводе которой предполагалось, что ионизируемые атомы находятся в среде с диэлектрической проницаемостью е, равной 1. В случае, когда е> 1, энергия ионизации уменьшается в е раз. Значения диэлектрической проницаемости для кремния и германия равны соответственно 11 и 16. Отсюда следует, что энергия ионизации донорных примесей в кристаллах этих элементов должна находиться в пределах от — эв =0,06 до — эв = 0,45 . С другой [c.126]

    Защита гюверхности кремния при помощи 5102 имеет определенные преимущества по сравнению с покрытиями из других диэлектрических материалов и широкозонных полупроводников (например, 51зМ4, 51С). [c.109]

    Благодаря высокой чувствительности активационный анализ находит широкое применение в разработке методов получения и контроля производства веществ высокой степени чистоты, так необходимых сейчас во многих областях науки и техники, в частности, в полупроводниковой промышленности. Особенно эффективным является активационное определение содержания в кремнии и германии ряда примесей, наличие которых оказывает существенное влияние на электрофизические характеристики полупроводников. К таким примесям относится, например, индий и сурьма. Как следует из табл. 13, радиоактивацион-иые методы определения этих элементов характеризуются исключительно высокой чувствительностью. [c.168]

    Совсем другие явлеиия наблюдаются тогда, когда полупроводниковый материал находится во внешнем электростатическом поле, положительный полюс которого расположен со стороны р-области полупроводника, а отрицательный — со стороны л-области. В зтом случае в цепи течет постоянный электрический ток. Электроны поступают в кристалл с правого электрода, затем проходят через зону проводимости -области, через область п—р-перехода попадают в валентную зону р-области и пере1мещаются здесь до границы кристалла за счет дырочной проводимости, пока не попадут в левый электрод. В противоположном направлении электрический ток течь ие может, так как при достаточно низком потенциале внешнего электрического поля электроны не могут преодолеть барьер в области п—р-перехода и, следовательно, не могут перемещаться слева направо. Такой кристалл работает как выпрямитель электрического тока, пропускающий только ток определенного направления. Его можно использовать для преобразования переменного тока в постоянный. В настоящее время выпрямители па основе кремния все больше вытесняют ламповые диоды. [c.84]

    Первичный интерес к изучению состояний области контакта ЗгОг с иными фазами был связан с проблемой определения эффекта окисления чистого кремния на его электрофизические характеристики причем до сих пор система Si/Si02 рассматривается как одна из основных при исследовании микроскопических явлений в широком классе гетеросистем оксид металла — полупроводник (транзисторные системы) [7,153—158]. [c.171]

    Заключение. В настоящем обзоре мы попытались представить в систематизированном виде данные по влиянию изотопического состава на различные свойства твёрдых тел — на постоянные кристаллической решётки, упругие свойства, фононы и другие возбуждения кристаллической решётки, на электро- и теплопроводность, на электронную структуру металлов и полупроводников и на фазовые превращения. В большинстве случаев изотопические эффекты малы, но есть обратные примеры, когда, как правило в изотопических смесях, изотопы оказывают сильное влияние на свойства твёрдых тел. Замечательным примером такого изотопического эффекта служит значительное (иногда в десятки раз) подавление теплопроводности диэлектриков и полупроводников. Исключительно высокая теплопроводность изотопически чистых полупроводников имеет хорошие перспективы использования в технике в тех случаях, где имеются большие тепловые нагрузки, например, в алмазных монохроматорах для синхротронного излучения [244] и в микроэлектронике [189, 190]. С точки зрения приложений изотопы кремния и германия находят применение для нейтронного трансмутационного легирования полупроводников [10,245]. Исследуются возможности использования изотонически обогащённого монокристалла кремния для точного определения числа Авогадро [58,59] с целью замены эталона килограмма. [c.95]

    Возросшие требования науки и техники к чистоте материалов заста-вшпг аналитическую химию обратиться к определению малых количеств примесей в чистых вегцествах. С развитием атомной промышленности потребовались высокочистые уран, торий, бериллий, цирконий, ниобий и другие металлы. Для электронной техники были необходимы более чистые венцества — германий, кремний, арсенид галлия, фосфид индия и другие полупроводники. Жесткие требования в отношении чистоты предъявлялись также к люминофорам и сцинтилляционным материалам. Химической промышленности необходимо было наладить изготовление особо чистых химических реактивов и большого числа вспомогательных веществ. [c.318]

    I. Большие токи обмена на полупроводниках в определенных редокс-системах еще не гарантируют возможность их применения. Необходимо, чтобы эти материалы обладали достаточной индифферентностью, но этому требованию большинство изучавшихся материалов, к сожалению, не удовлетворяет. Не удовлетворяют ему классические полупроводниковые электроды из германия и кремния, из упоминавшихся выше сульфида кадмия и антрацена. Значительно более устойчивы в определенных областях pH окислы ЗпОг, РЬО, у-РегОз и Рез04, N 0. [c.68]

    Большой интерес представляет структура Кр -полосы кремния, элемента, некоторые свойства которого (например, зависимость его электропроводности от температуры) до сих пор еще не позволяют совершенно надежно отнести его к металлам или электронным полупроводникам. Решающие в этом отношении эксперименты по определению знака температурного коэффициента электроироводности кремния, выполненные до сих пор, приводили к противоречивым результатам. В связи с этим было даже высказано предположение, что кремний и некоторые другие вещества, считающиеся обычно электронными полупроводниками, в действительности обладают металлической проводимостью, а наблюдающееся иногда у этих веществ возрастание электропроводности с температурой объясняется разрушением оксидных пленок, разделяющих мелкие кристаллики в пределах поликристаллического образца. Такая же двойственность характеризует и результаты рентгеноспектроскопического изучения К-эмиссионных полос кремния и его соедине-НИ11. Здесь также наблюдаются значительные разногласия в результатах, полученных разными авторами, и сосуществование признаков, характерных для свойств металлических тел и полупроводников. [c.44]

    Чтобы электроны из валентной зоны перешли в зону проводн-мостп, они должны получить определенное количество энергии, достаточное для преодоления запрещенной зоны. В изоляторах все электроны находятся в валентной зоне, а в зоне проводимости они отсутствуют. Это обусловлено тем, что ширина запрещенной зоны в изоляторах больше, чем в полупроводниках. Например, в типичных полупроводниках — германии и кремнии ширина запрещенной зоны составляет J.OT-IO- и 1,75-10 Дж соответственно, в типичных изоляторах — примерно 10 Дж. Строго установить границу между полупроводниками и изоляторами невозможно, поэтому при пято считать, что она лежит при значении ширины запрещенной зоны около 2-10- Дж. [c.28]


Смотреть страницы где упоминается термин Полупроводники, определение кремния: [c.319]    [c.319]    [c.105]    [c.80]    [c.113]    [c.453]    [c.46]    [c.124]    [c.362]    [c.432]    [c.357]    [c.412]    [c.191]    [c.78]   
Определение анионов (1982) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение

Кремний полупроводник

Полупроводники

Полупроводники полупроводники



© 2024 chem21.info Реклама на сайте