Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никелевые атмосферная

    Для ориентировочных подсчетов в случае обогрева аппаратов насыщенным водяным паром коэффициент теплопередачи к кипя-ш,ей при атмосферном давлении воде может быть принят для никелевой стенки = 865 ккал/м час °С, для. медной стенки к = = 580 ккал/м час °С. [c.191]

    При определенных условиях в присутствии никелевых и железных катализаторов можпо получить слол ную смесь жидких углеводородов с октановым числом 75—80, главным образом непредельных, выкипающих в пределах 20—330°. Выход составляет при атмосферном давлении 75%, а при повышенном давлепии 90% [121]. [c.242]


    В, Р. Жаркова и А, В. Фрост [7] сочли ненадежными результаты работ цитированных авторов и решили вновь провести измерения в более широком интервале температур. Они исследовали реакцию (X) при атмосферном давлении и температурах 223—276° С в присутствии никелевого катализатора. В опытах этих авторов равновесие достигалось как со стороны гидрирования бензола, так и со стороны дегид- / рирования циклогексана. [c.273]

    Катализаторы конверсии бензиновых фракций с водяным паром при низких температурах, низком и среднем давлении. Низкотемпературная паровая каталитическая конверсия жидких углеводородов является сравнительно новым способом получения метансодержащего газа — заменителя природного газа (см. табл. 25). Процесс этот осуществляется на активных промотированных никелевых катализаторах с повышенным (до 50%) содержанием никеля при пониженных температурах (320—540° С). В качестве промотирующих добавок используют окислы следующих металлов калия, бария, магния, кальция, стронция, лантана, цезия и др. Иногда процесс проводят при рециркуляции части полученных газов (после освобождения их от двуокиси углерода). Весовое отношение пар углеводород может колебаться в пределах от единицы до шести,, а давление — от близкого к атмосферному до 30 атм. Весовая ско рость подачи жидкого сырья может доходить до 3 ч . [c.41]

    Углеводороды конвертируют с водяным паром при температуре более 550° С и атмосферном или повышенном давлении сначала на вспомогательном никелевом катализаторе, загружаемом в первой части трубы и на [c.157]

    Для защиты металлов от атмосферной коррозии широко применяют нанесение различных защитных неметаллических (смазки, лакокрасочные покрытия) и металлических (цинковых, никелевых, многослойных) покрытий или превращение поверхностного слоя металла в химическое соединение (окисел, фосфат), обладающее защитными свойствами. [c.383]

    Гидрирование позволяет получить нз жидких жиров твердые жиры с заданной температурой плавления. В промышленности используются главным образом никелевые н медно-никелевые катализаторы при температуре 180—240 °С. Гидрирование проводят при давлении, близком к атмосферному, низком [c.43]

    Процесс гидрирования осуществляют при давлении 1,5—2 МПа, температуре 135—150 °С в присутствии никелевого катализатора. Выход циклогексанола достигает 95% от теоретического . Циклогексанол-сырец очищают ректификацией и затем подвергают дегидрированию при 400—450 С и давлении, близком к атмосферному. В качестве катализаторов используют цинковые контакты (сплавы Zn—Fe, Zn—Сг и др.). Степень превращения циклогексанола за проход составляет 70—80%. [c.305]


    Деалкилирование толуола и других аренов может быть осуществлено при более низкой температуре ( 5 375°С) водяным паром при атмосферном давлении в присутствии никелевого или никель-хромового катализатора. Бензол в этом процессе образуется по уравнениям  [c.312]

    В промышленных условиях реакция (13) осуществляется на никелевом катализаторе при атмосферном давлении и температуре 750—800 °С [17, 35, 44—46]. В этих условиях могут протекать реакции крекинга (особенно, если сырье содержит углеводороды, более высокомолекулярные, чем метан), приводящие к образованию углерода  [c.26]

    Известно, что циклогексаны легко ароматизируются над алюмохромовыми, алюмомолибденовыми и алюмоплатиновыми катализаторами. Однако в лабораторных условиях эти катализаторы не всегда обеспечивают достаточно высокие выходы, что связано с высокой изомеризующей активностью кислой окиси алюминия, которая способствует превращению циклогек-санов в циклопентаны. Активированный уголь, являясь инертным носителем, часто используется в качестве подложки для катализаторов, содержащих 5% или 5% Рс1.Реакции проводят при 200-300°С и атмосферном давлении. Никелевые катализаторы обладают способностью проводить разложение углеводородов до углерода и водорода, а также до метана и водорода, и поэтому они менее надежны в реакции дегидрогенизации. [c.78]

    Если в олефинах отсутствуют каталитические яды, то их можно гидрировать при атмосферном давлении и комнатной температуре на активных никелевых катализаторах. Однако обычно реакции проводят при повышенных температурах и давлениях. Условия процесса гидрирования олефинов, применяемые в промышленности, можно рассмотреть на примере гидрогенизации диизобутилена и содимера изобутилена и бутилена. Применяются таблетки стационарного катализатора, содержащего [c.196]

    Паровой риформинг — процесс взаимодействия испаренного углеводорода с паром в присутствии катализатора в диапазоне температур 500—900 °С. Реакции риформинга эндотермичны. Если количество тепла становится недостаточным для протекания реакции, температуру восстанавливают путем перехода с парового ( рабочий период ) на воздушное ( дутьевой период ) дутье. Такова схема периодического риформинга, в котором собственно реакции риформинга идут на никелевом катализаторе, нанесенном на насадку из огнеупорного кирпича, при температуре 900 °С и атмосферном давлении. Тепло на процесс может поступать через стенки реактора при сжигании СНГ, газойля или дистиллята в топке печи, куда вмонтирован реактор. Это риформинг непрерывного действия, так как при его проведении обеспечивается непрерывный приток тепла, необходимого для осуществления процесса. [c.40]

    Синтез углеводородов можно проводить при атмосферном и повышенном давлениях. В присутствие никелевых катализаторов процесс нельзя проводить при давлениях, намного превышающих атмосферное. Это связано с тем, что с ростом давления резко усиливается образование легколетучих карбонилов никеля, обладающих очень высокой токсичностью и коррозионной активностью. В присутствии кобальтовых и железных катализаторов давление может быть повышено до 2 МПа. Рутений при атмосферном давлении обладает невысокой активностью и лишь при давлении более 10 МПа его удельная производительность достигает такой же величины, как у кобальтовых и железных катализаторов при 0,1-2 МПа. [c.107]

    В гальваностегии медные покрытия применяются для защиты стальных изделий от цементации, для повышения электропроводности стали (биметаллические проводники), а также в качестве промежуточного слоя на изделиях из стали, цинка и цинковых и алюминиевых сплавов перед нанесением никелевого, хромового, серебряного и других видов покрытий для лучшего сцепления или повышения защитной способности этих покрытий. Для защиты от коррозии стали и цинковых сплавов в атмосферных условиях медные покрытия небольшой толщины (10—20 мкм) непригодны, так как в порах покрытия разрушение основного металла будет ускоряться за счет образования и действия гальванических элементов. Кроме того, медь легко окисляется на воздухе, особенно при нагревании. [c.396]

    В настоящее время наиболее часто применяют водородно-кислородный топливный элемент. Устройство его чрезвычайно простое (рис. 64). В герметически закрытом сосуде установлено два пористых металлических (чаще всего никелевых) электрода, разделенных слоем раствора гидроксида калия или натрия. К поверхностям электродов подаются газообразные водород и кислород соответственно. Схему элемента со щелочным электролитом можно записать следующим образом (—)Н2 К0Н 02(+). Элемент работает при 50—70°С и атмосферном давлении. На электродах протекают реакции на аноде — электрохимическое окисление водорода [c.247]

    Эти покрытия могли бы вызывать разрушение основного металла (рис. 1.17,6), что привело бы к образованию пузырей и отслаиванию покрытия (рис. 1.17, в), но имеется большое количество смягчающих факторов, аналогичных рассмотренным применительно к анодным покрытиям. Как и для анодных покрытий, характер окружающей среды имеет важное значение воздействие коррозии при погружении в водную среду значительно сильнее, чем в атмосферных условиях. Сталь, имеющая недостаточно сплошное никелевое покрытие, ржавеет в порах, однако вред, наносимый при этом, будет меньше, чем при отсутствии покрытия. И катодные, и анодные покрытия изменяют действие коррозии в порах за счет таких факторов, как условия [c.45]


    Сложные по составу трубы, полученные прокатыванием, пригодны для теплообменников. Их внутренние и наружные покрытия можно изготовлять из медных сплавов, никелевых, мягкой и нержавеющей стали. На медные или алюминиевые кабели можно наносить штампованные внешние оболочки из свинца, свинцовых сплавов или чистого алюминия. И наконец, стальные листы могут быть плакированы свинцом путем прокатки, что обеспечивает высокое сопротивление воздействию атмосферной или кислотно-коррозионной среды, а также высокие звукопоглощающие свойства. [c.106]

    Никель — белый металл, по прочности равный стали, имеет высокую стойкость к атмосферной и водной коррозии. Скорость атмосферной коррозии, составляющая 0,02—0,2 мкм в год, с увеличением срока службы покрытия стремится к снижению благодаря пассивации поверхности металла в результате образования инертной окисной пленки. Никель — пластичный металл, однако пластичность никелевого покрытия зависит от метода его нанесения и чистоты. Многие никелевые покрытия, получаемые в процессе электроосаждения (особенно в присутствии органических блескообразователей), могут быть хрупкими и иметь высокие внутренние напряжения. Никелевые покрытия, осаждаемые химическими способами, обладают большой твердостью, хрупкостью и низкими коррозионными характеристиками из-за образования фосфора и бора в осадках (что характерно для осаждения из сложных растворов). [c.117]

    В атмосферных условиях магниевые сплавы не должны контактировать со сплавами на железной и никелевой основе, а также с благородными металлами и незащищенными алюминиевыми сплавами. [c.84]

    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]

    Эч от результат в изиостной степени можно объяснить, если учесть, что тогда еще не была установлена необходимость периодической промывки катализатора хорошим растворителем. Даже наиболее активные катализаторы, работающие при атмосферном давлении, нуждаются в такой обработке для удаления высокомолекулярного парафина, накапливающегося на них. В 1930—1933 гг. Фишером и его сотрудниками [27а] были разработаны высокоактивные никелевые и кобальтовые катализаторы. Впоследствии в германской промышленности синтетического топлива нашел применение кобальтовый катализатор, осажденный на кизельгуре и содержавший окиси тория и магния. В процессах, разрабатываемых в последнее время, используются железные катализаторы. [c.520]

    Металлы и соединения металлов. Полимеризация этилена наблюдалась в присутствии различных металлов при атмосферном давлении [42]. С кобальтовым катализатором экзотермическая реакция (показатель полимеризации) этилена идет с умеренной скоростью при 200°, значительнее при 300° и интенсивно при 350°. Каталитическая активность кобальта слегка промотируется ТЬОз, идОв Ь120 А12О3 и 2иО. С никелевым катализатором экзотермическая реакция достигает своего максимума при температуре около 280°. Заметного каталитического действия с железными и с железно-медными катализаторами не наблюдалось. [c.205]

    Олефины с третичной основой большей частью труднее поддаются гидрированию, чем внутренние непредельные соединения с прямой цепью, а те в свою очередь, более устойчивы, чем термические олефины [176]. Благодаря тому, что реакция устойчива к катализатору, температуре, давлению и углеводородной структуре, создаются благоприятные условия для селективного гидрирования примером этого служит удаление олефинов из ароматических углеводородов при низкой температуре (20° С и давлении водорода 28 кПсм или 115—175° С при атмосферном давлении водорода) над никелевым катализатором [177] и насыш ение бензино-лигроиновой фракции термического крекинга [178]. [c.90]

    Каталитическое гидрирование в паровой фазе при атмосферном давлении над восстановленным никелем было открыто Сабатье Вскоре В. Н. Ипатьев впервые применил гидрирование в жидкой фазе под давлением водорода. За почти семидесятилетний период развития и изучеааия реакций гидрирования было открыто много весьма активных катализаторов позволявших работать при очень мягких условиях никелевые катализаторы на носителях, хромит-медные катализаторы, окись платины, платиновая чернь и др. Большое значение, в том числе и промышленное, получили так называемые скелетные никелевые катализаторы ( никель Ренея ) . К настоящему времени ряд катализаторов значительно пополнен, а известные катализаторы усовершенствованы. Так, например, очень активными катализаторами являются сплавы никеля и родия, платины и рутения, модифицированные катионами палладиевые катализаторы и др. Скелетные катализаторы значительно улучшены промотированием , а приготовление катализаторов усовершенствовано так, что платиновая чернь, например, может быть получена с хГоверхностью до 200 м /г, в то время как в прошлом лучшие образцы имели поверхность не более 50—60 м г. [c.130]

    Катодные покрытия, имеющие более положительный электродный нотеициал, чем потенциал углеродисто ) стали, защи-1цаю1 сталь только механически, пока покрытие сплошное. Из таких покрытн1 1 представляют интерес никелевые, хромовые и свинцовые покрытия. Никелевые покрытия обладают стойкостью в щелочных средах и нашли иримеиение для защиты ванн [ ри электролизе воды. Никелевые и хромовые покрытия служат также хорошей защитой от атмосферной коррозии. [c.320]

    Другие сернистые соединения поглощаются никелевыми катализаторами в еще больших количествах. Сероемкость катализатора в присутствии водорода при повышенных температурах увеличивается в несколько раз. Предложены специальные катализаторы повышенной се-роемкости [57]. Сероочистку бензола отработанным катализатором проводят при температуре около 90° С и давлении 38 ат [49, 50]. Можйо использовать также хемосорбцию сернистых соединений на катализаторе при атмосферном давлении, температуре 150—180° С и подаче водорода в количестве 10—30 объемов на 1 объем бензола [50]. [c.321]

    Опыты по гидрогенизации тпофена и дипропилсульфида на никелевом катализаторе прп температуре 300° С п атмосферном давлении водорода показали, что прочность тиофена значптельно больше, чем сульфида [10]. [c.385]

    Расчеты выполнялись для катализатора П1АП-3 с удельной никелевой поверхностью 0 65 м /г. Средний радиус пор в этом катализаторе составляет 600-2000 X и диффузия в них протекает в переходной области при атмосферном давлении и в молекулярной области при ЗОат. В расчетах принимался радиус, равный 1000 i.. Коэффициент пронидае- мости оказался равны л п - 0,06-0,07. [c.71]

    Установка с высокотемпературным нагревом реагентов (до бОО С) с беспламенным окислением метана без образования сажи была пущена фирмой БАСФ (ФРГ) в 1954 г. Реактор шахтного типа загружался (по ходу газа) слоем инертного огнеупорного материала, затем слоями платинового и никелевого катализаторов. Платиновый катализатор служил форконтактом для быстрого развития реакций при большой объемной скорости. Температурный шксимум приходится на первые сантиметры этого катализатора, а никелевый служит в основном для эндотермических реакций. Слой инертного материала предотвращает проскок пламени в объем над катализатором. Давление в реаюторе близко а к атмосферному. Несмотря на высокотемпературный нагрев (600°С) реагентов (метана, пара и кислорода), горения в свободном объеме и образование сажи не наблюдалось. Впоследствии аналогичный метод ирма 6АСФ применила для конверсии бензинов при атмосферном давлении. [c.102]

    Деалкилирование толуола впервые осуществлено на никелевых катализаторах. Позднее было установлено, что указанные реакции катализируют также металлы платиновой группы, нанесенные на окись алюминия. В одном из исследований [195] каталитическую активность этих металлов, нанесенных на у = А120з, сравнивали при 300—500 °С и установили, что они катализируют реакцию гидродеалкилирования толуола. Установлено, что при 350—560°С и атмосферном давлении селективность этой реакции определяется природой металла и при глубине превращения толуола до 50% изменяется от 99 до 80% (мол.). При эквиатомном содержании металлов на носителе (6 моль-атом Ме на 1000 моль у-Л Оз) наиболее активен в этой реакции родий, а наименее активны платина и палладий. При 490°С активность катализаторов изменяется в ряду ЯЬ>1г>08>Р(1>Ки>Р1. [c.293]

    Этот метод применим для гидрогенизации л-динитротолуола, особенно в растворителе. Скорость введения водорода, а следовательно, и скорость гидрогенизации и выделения тепла можно регулировать и обеспечить безопасное течение реакции. Палладиевый катализатор работает при атмосферном давлении и комнатной температуре. Можно использовать медь Ренея и почти любые восстановленные никелевые катализаторы или [c.216]

    Соноставлёние процессов ароматизации на металлических катализаторах под атмосферным и повышенным давлением позволяет сделать следую-ш ее обш ее заключение. При атмосферном давлении и температурах 300— 310° протекают в основном реакции дегидрирования шестичленных нафтеновых углеводородов (особенно на никелевом катализаторе). Реакции де-гидроизомеризации пятичленных нафтеновых, дегидроциклизации и изомеризации парафиновых углеводородов протекают медленно, глубина их редко превышает 5—10%. Стимулирование этих важных в практическом отношении направлений реакций повышением температуры вызывает коксо-образование и быструю дезактивацию катализатора. Эти затруднения можно устранить повышением давления при этом достигаются более высокие выходы целевых ароматических углеводородов и высокие октановые числа бензинов. [c.99]

    Способность связи С-галоген к гидрогенолизу используется при удалении атомов галогена из ароматических циклов. Так, 4,5-дииодо-1-метил- и 2,4,5-трииодо-1-метилимидазол легко восстанавливаются в 4-иод-1-метилимидазол рассчитанным количеством водорода при атмосферном давлении и температуре 20 °С на скелетном никелевом катализаторе в присутствии основания  [c.14]

    Из приведенных примеров обращения активности восстанавливающихся групп при гидрировании, очевидно, следует, что, хотя их относительная реакционная способность в основном определяется химическим строением, некоторую селективность действия проявляет и катализатор, т. е. металл катализатора и модифицирующие добавки (промоторы и дезактиваторы). Платиновые катализаторы, на которых при комнатной температуре и атмосферном или слегка повышенном давлении гидрируются почти все типы органических соединений, полностью неэффективны при восстановлении карбоновых кислот и их эфиров в спирты. Хромит цинка, на котором при высокой температуре и давлении гидрируется алкокси-карбонильная группа, неактивен при восстановлении легко гидрирующейся на других катализаторах С=С-связи. Поверхностные осмиевые катализаторы, в отличие от скелетного никелевого катализатора или оксида платины, обеспечивают первоочередное восстановление карбонильной группы в а,-ненасыщенных альдегидах  [c.34]

    Матовая поверхность никеля, осаждаемого из электролита Уоттса, после полирования становится блестящей. Полировка способствует уменьшению пористости тонкого слоя покрытия. На никеле, подверженном атмосферному воздействию, образуется тусклая серовато-коричневая патина. Она защищает металл, но отрицательно сказывается на внешнем виде изделия, поэтому поверхность металла следует систематически полировать. Сохранение декоративных качеств обеспечивается нанесением на никелевое покрытие тонкого слоя хрома, устойчивого [c.46]


Смотреть страницы где упоминается термин Никелевые атмосферная: [c.91]    [c.334]    [c.281]    [c.241]    [c.41]    [c.46]    [c.136]    [c.235]    [c.182]    [c.138]    [c.49]    [c.22]    [c.67]    [c.47]   
Морская коррозия (1983) -- [ c.77 , c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Никелевые сплавы коррозия атмосферная



© 2025 chem21.info Реклама на сайте