Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никелевые катализаторы активность

    Никелевые катализаторы весьма чувствительны к действию сернистых соединений. Сероводород и серосодержащие органические соединения, входящие в состав исходной газовой смеси, взаимодействуя с никелем, образуют сульфид никеля. При этом катализатор постепенно теряет активность. В большинстве случаев катализатор, отравленный сернистыми соединениями, не восстанавливает своей активности даже при переходе на работу с очищенным газом. [c.34]


    На преимущественное направление того или иного процесса существенное влияние оказывает температура. Так, при 250° С, когда никелевый катализатор активно осуществляет дегидрирование, основным продуктом превращений циклоундекана является бицикло(5,4,0)ундекан, тогда как при 200° С более выражен процесс постадийных превращений с сужением циклов [29]. [c.163]

    Основные результаты работы, проводившейся нами совместно с Давыдовой, были кратко опубликованы [29, 30]. Опыты проводились в циркуляционной квазистатической системе, в вакуумной установке, аналогичной описанной выше, также на образцах восстановленного никеля. ]Методика заключалась в адсорбции определенных количеств циклогексана при температурах 30—100° С на образцах никелевого катализатора (активность которого в отношении реакции (V) была снижена путем предварительной обработки циклогексаном, содержащим примесь пиридина). Затем система замораживалась до —196° С и на катализаторе с адсорбированным на нем циклогексаном проводилась реакция (V). Давление водорода при этом было 20 мм рт. ст., скорость реакции контролировалась измерением теплопроводности смесей о- и р-Нд. [c.140]

    С целью предотвращения отложения углерода на катализаторе предлагается осуществлять процесс в условиях постепенного повышения температуры по длине реактора (по ходу газа) от 600—800° С. Применение глины, модифицированной окислами щелочноземельных металлов, в качестве основы носителя никелевого катализатора обеспечивает его стабильную активность, предотвращает отло- [c.34]

    Катализаторы конверсии бензиновых фракций с водяным паром при низких температурах, низком и среднем давлении. Низкотемпературная паровая каталитическая конверсия жидких углеводородов является сравнительно новым способом получения метансодержащего газа — заменителя природного газа (см. табл. 25). Процесс этот осуществляется на активных промотированных никелевых катализаторах с повышенным (до 50%) содержанием никеля при пониженных температурах (320—540° С). В качестве промотирующих добавок используют окислы следующих металлов калия, бария, магния, кальция, стронция, лантана, цезия и др. Иногда процесс проводят при рециркуляции части полученных газов (после освобождения их от двуокиси углерода). Весовое отношение пар углеводород может колебаться в пределах от единицы до шести,, а давление — от близкого к атмосферному до 30 атм. Весовая ско рость подачи жидкого сырья может доходить до 3 ч . [c.41]


    В то же время имеются данные о возможности применения никелевого катализатора на алюмосиликатном носителе (см. табл. 30, № 20). Содержание окиси кремния в таком катализаторе значительно превышает указанную норму. Из опыта крекирования нефтепродуктов известно, что алюмосиликатный катализатор проявляет большую активность при расщеплении углеводородов, чем окись кремния. Тем не менее такой катализатор стабильно работал более четырех месяцев при конверсии бензина, содержащего менее 0,0001 % серы (по другим данным переработка бензина с таким малым содержанием серы сопровождается зауглероживанием катализатора). [c.48]

    В качестве катализатора применяют магнезиальный кирпич в форме колец. Активным компонентом такого катализатора считают известь (см. табл. 32, № 14 и 15). В этом случае конверсию тяжелого углеводородного сырья проводят при температуре около 1000° С. Хромомагнезитовый и доломитовый кирпич используют и в качестве носителя никелевого катализатора (табл. 32, № 16). Используется для этой цели и силикатный кирпич (табл. 32, № 17). Применяется также никелевый катализатор более сложного состава, ос- [c.52]

    Никелевый катализатор, нанесенный на кизельгур. На катализаторе отлагается углерод, что при длительной работе изменяет активность катализатора [c.120]

    Никелевый катализатор, нанесенный на данный носитель, испытывали в процессе конверсии природного газа бухарского месторождения с паровоздушной смесью, обогащенной кислородом в соотношении СН4 Н2О 62 N2= = 1 1 0,6 0,9. Результаты опыта, продолжавшегося 150 часов, подтвердили высокую и стабильную его активность [c.93]

    Заметного понижения активности железного катализатора не наблюдается. Температура процесса примерно на 100 С выше той, которая необходима при использовании никелевого катализатора [c.103]

    Однако интерпретированная таким образом разница в энергетике образования и разрушения активного комплекса в случае хромового и молибденового катализаторов, с одной стороны, и никелевого и железного, с другой — еще не объясняет ни качественно одинакового явления уменьшения скорости гидрирования в ряду бензол — толуол — ксилолы — триметилбензол, ни того, что это уменьшение более резко проявляется в случае никелевого катализатора и наименее резко — в случае хромового (см. табл. 14). Интересно отметить, что на хромовом катализаторе 1,3,5-триметилбензол гидрируется медленнее бензола в 3,3 раза, на железном в 9,3 раза, а на никелевом в 28 раз. Поскольку при гидрировании присоединяются три молекулы водорода, то лимитировать процесс может либо присоединение второго атома водорода либо группа медленных стадий присоединения водорода [c.148]

    Никелевый катализатор на основе окиси магния. Содержание никеля в катализаторе 7—8%. Катализатор отличается повышенной активностью [c.104]

    Никелевый катализатор ГИАП 5 получают в виде цилиндрических гранул прессованием смеси соединений никеля, жароупорных материалов и цемента. После отвержения гранулы прокаливают при температуре более 800 С. За три месяца работы активность катализатора не снизилась [c.114]

    По истечении 40 мин работы никелевого катализатора на доломитовом (нейтральном) носителе активность контакта резко падает из-за отложения кокса. Регенерация катализатора не восстанавливает его активности. Через 10 мин катализатор снижает активность из-за отравления сероводородом [c.187]

    Каталитическая активность различно приготовленных никелевых катализаторов при 100° С для дейтеро-водородного обмена [c.308]

    Ясно, что никелевый катализатор позволяет удалить кислород, серу, азот, сохраняя углеводородные цепи. Поэтому расчет по Баландину энергий связи в переходном комплексе позволяет на основе термодинамических расчетов предвидеть каталитическую активность. [c.311]

    Свойства ядов первой группы Мэкстед связывает с наличием у них неподеленных электронных пар, вследствие чего образуются прочные хемосорбционные связи яда с металлом, обусловливающие большую продолжительность жизни яда в адсорбированном состоя-шш. Таким образом, яд, покрывая поверхность катализатора, дезактивирует его. Любарский [112] показал, что при покрытии монослоем тиофена никелевого катализатора гидрирования наступает полное отравление последнего. Если активная поверхность составляет лишь часть общей поверхности катализатора, то количество яда, вызывающее полное отравление, естественно, меньше, чем требующееся для образования монослоя. Роль неподеленных электронных пар при отравлении подтверждается тем, что соединения, в которых они отсутствуют, не токсичны (см. табл. 1.1). Нужно только иметь в виду, что нетоксичные соединения под влиянием реагентов могут переходить в токсичные например, арсенаты в условиях гидрирования переходят в арсины. [c.54]

    Уравнение (IV. 12) объясняет многие кажущиеся отклонения от линейного закона связи активности катализатора с его кислотностью и, очевидно, может быть распространено на другие, не кислотные, катализаторы. При этом функция кислотности заменяется соответствующей характеристикой, например окислительно-восстановительным потенциалом, как это сделано в работе [36 ] для окисного никелевого катализатора. [c.162]


    Отмечалось что суммарная активность никелевых катализаторов гидрокрекинга увеличивается в ряду [c.127]

    Все приведенные выше данные относятся к вольфрамовым й, частично, к другим сульфидным катализаторам. Однако модифицирование изомеризующей активности акцепторными примесями имеет, по-видимому, общее значение. Изменение свойств никелевых катализаторов добавкой серы так, что они начинают вести себя как сильнокислотные, было описано еще в 1957 г. В настоящее время [c.271]

    Никель Ренея - активный и универсальный катализатор реакций гидрирования. В зависимости от строения восстанавливаемого соединения он используется при температурах от 20 до 200 °С и давлениях до 250 атм и более. Повышенная по сравнению с другими никелевыми катализаторами активность никеля Ренея проявляется преимущественно при гидрировании в мягких условиях. Например, ацетон легко гидрируется на скелетном никеле под давлением [c.22]

    Никелевые катализаторы активны также при декарбоксилироваиии кислот [2121, 2135, 2136] и декарбонилировании альдегидов [2113—2116, 2118, 2119, 598]. [c.730]

    Джексон и Сэсс провели подробное исследование активности катализаторов, приготовленных из металлов VIII группы и меди и использованных для димеризации пиридина и хинолина. Ими установлено, что для синтеза 2,2 -ДП из пиридина эффективными являются только катализаторы на основе никеля и палладия. Среди никелевых катализаторов активным оказался только никель Ренея. Слабую активность показали катализаторы, приготовленные из никеля — магния и никеля на цинке. Полностью инертным оказался никель на носителях. Очень малая активность палладия на AI2O3, по сравнению с палладием на угле, указывает на важность природы носителя [326]. [c.16]

    Паровая конверсия метана с приемлемой скоростью и глубиной превращения протекает без катализатора при 1250—1350 °С. Катализаторы конверсии углеводородов предназначены не только д/я ускорения основной реакции, но и для подавления побочных реакций пиролиза путем снижения температуры конверсии до 800 — 9СЮ °С. Как наиболее активные и эффективные катализаторы конверсии метана признаны никелевые, нанесенные на термос — тс йкие и механически прочные носители с развитой поверхностью ти па оксида алюминия. С целью интенсификации реакций газифи — Кс1ции углерода в никелевые катализаторы в небольших количествах обычно вводят щелочные добавки (оксиды Са и Мд). [c.158]

    Гидрирование окиси углерода с образованием спиртов и углеводородов выше Gj представляет собой относительно медленную каталитическую реакцию. Андерсон [27с] рассчитал, что молекула окиси углерода живет на поверхности кобальтового катализатора около 5 мин., прежде чем она прореагирует. Все активные катализаторы синтеза содерн ат железо, иикель, кобальт или рутений в качестве основного гидрирующего компонента. Эти четыре металла в условиях синтеза медленно, но с измеримой скоростью образуют карбонилы металлов, что, по-видимому, имеет определенное значение. Оптимальная температура синтеза для никеля и кобальта находится в пределах 170—205°, для железа 200—325° и для рутения 160—225°. Допустимое максимальное давление для синтеза на никелевых катализаторах составляет примерно 1 ат, на кобальтовых — около 20 ат. При более высоком давлении активность этих катализаторов резко падает (по мере повышения давления). Железные катализаторы, приготовляемые плавлением магнетита, проявляют активность под давлением 20—100 ат i, в то время как осажденные железные катализаторы выше 20 ат ослабевают I27d]. Рутениевые катализаторы относительно неактивны при давлении ниже 100 ат, но их активность быстро растет по мере его повышения до 300 ат [27е]. При оптимальных давлениях (О—1 ат для Ni 1—20 ат для Go, 1—20 ат для осажденных Fe-катализаторов, 20—100 ат для плавленых Fe-катализаторов и 100—300 ат для Ьи) коэффициент давления (показатель п в уравнении скорость = коистат та х давление") составляет около 0—0,5 для Ni и Go и близок к единице для Fe и Ru. [c.521]

    Клайн и Коллонтиш в обзорной статье о вольфрамовых катализаторах гидроочистки, гидрокрекинга и изомеризации подчеркивают высокую изомеризующую активность WSj, в то же время вольфрамовые катализаторы на носителях уступают платиновым и сульфидированным никелевым катализаторам. Для усиления изо-мерйзующей активности W и Мо наносятся на кислотные носители — алюмосиликаты и цеолиты. Эти выводы являются свидетельством известной универсальности и достоверности оценки активности катализаторов таким методом. [c.265]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Металлы и соединения металлов. Полимеризация этилена наблюдалась в присутствии различных металлов при атмосферном давлении [42]. С кобальтовым катализатором экзотермическая реакция (показатель полимеризации) этилена идет с умеренной скоростью при 200°, значительнее при 300° и интенсивно при 350°. Каталитическая активность кобальта слегка промотируется ТЬОз, идОв Ь120 А12О3 и 2иО. С никелевым катализатором экзотермическая реакция достигает своего максимума при температуре около 280°. Заметного каталитического действия с железными и с железно-медными катализаторами не наблюдалось. [c.205]

    Никель и кобальт обладают, по-видимому, приблизительно одинаковой гидрогенизующей активностью [65, 10]. Возможно, что высокая активность никеля Ренея обусловлена нромотирующим действием окиси алюминия. Никель Ренея W-6 [3], высокоактивный тин никелевого катализатора, содержит 70 и никеля, 21% окиси алюминия, 1,4, о металлического алюминия и 7,6% алюмината натрия [62]. [c.265]

    Некоторые исследователи предлагают для проведения этого процесса катализаторы, получающиеся подобно известному никелевому катализатору Ренея (см. табл. 26). Применяемые в этом низкотемпературном процессе катализаторы (в отличие от высокотемпературных катализаторов конверсии метана) обладают хорошо развитой поверхностью. Общая поверхность таких катализаторов достигает 300 м /г, и никелевая — 60 м /г. Для лучшего сохранения активности такого катализатора сырье предварительно пропускают над отработанным контактом. [c.42]

    В обычный никелевый катализатор пропиткой вводят до 0,2% палладия (табл. 30, № 23). На этом катализаторе также не отмечалось образования углерода в условиях паровой конверсии бензина. Иридий применяют в качестве единственного активного компонента катали )атора, но лишь в первом из двух последовательно соединенных реакторов (во втором реакторе загружается обычный никелевый катализатор). В этом катализаторе содержится 7% иридия и другие обычно применяемые компоненты катализаторов кон- [c.49]

    Носитель никелевого катализатора, содержащий 81,6% окиси магния и 5% бентонита, имеет основной характер. Доломитовый кирпич, состоящий из окислов кальция и магния, имеет нейтральный характер. Никелевый катализатор на такой основе достаточно активен, но быстро теряет свою активность вследствие зауглерожи-вания. Причем, в этом случае, регенерация катализатора не восстанавливает его активности. Быстро отравляется этот катализатор и сероводородом. При обработке такого катализатора одним водяным паром его активность резко падает. Обработка катализатора смесью пара с углеводородами мало влияет на его активность. [c.53]

    Конверсию нефтяных дистиллятов на никелевом катализаторе проводят в две или более ступеней. На каждую ступень вводят лищь часть испаренного углеводорода, а все потребное количество водяного пара направляют в первую ступень. Таким путем достигают увеличения продолжительности катализатора до потери им активности. Часть испаренных углеводородов смешивается с паром при 350° С и смесь поступает в слой никелевого катализатора при температуре 400—600° С. Общее весовое отношение пар сы-)ье равно не менее 1,6. Троцесс проводится при давлении 10—25 ат [c.143]

    Известны многочисленные примеры изменения активности катализаторов путем смешения. Так, скорость гидрирования окиси углерода на никелевом катализаторе увеличивается в несколько раз, при добавлении окиси алюминия (или Сг, Мо, V , в небольших количествах). Активность платинового катализатора иногда увеличивается при добавлении РеС1з. [c.242]

    В табл. XII, 8 приведены активности трех никелевых катализаторов, различным образом приготовленных и обладающих по1зерхностью, различающейся более чем в 150 раз. Если в основу оценки положить общую активность А, то катализаторы расположатся в ряду  [c.309]

    Каталитическое гидрирование в паровой фазе при атмосферном давлении над восстановленным никелем было открыто Сабатье Вскоре В. Н. Ипатьев впервые применил гидрирование в жидкой фазе под давлением водорода. За почти семидесятилетний период развития и изучеааия реакций гидрирования было открыто много весьма активных катализаторов позволявших работать при очень мягких условиях никелевые катализаторы на носителях, хромит-медные катализаторы, окись платины, платиновая чернь и др. Большое значение, в том числе и промышленное, получили так называемые скелетные никелевые катализаторы ( никель Ренея ) . К настоящему времени ряд катализаторов значительно пополнен, а известные катализаторы усовершенствованы. Так, например, очень активными катализаторами являются сплавы никеля и родия, платины и рутения, модифицированные катионами палладиевые катализаторы и др. Скелетные катализаторы значительно улучшены промотированием , а приготовление катализаторов усовершенствовано так, что платиновая чернь, например, может быть получена с хГоверхностью до 200 м /г, в то время как в прошлом лучшие образцы имели поверхность не более 50—60 м г. [c.130]

    Принцип ЛССЭ особенно хорошо соблюдается для гетерогенных кислотных и основных катализаторов [22—25]. Экспериментальная проверка метода линейных корреляций показала, что их применение выходит далеко за пределы кислотного катализа. Известны результаты по расчету активности оксидного никелевого катализатора в реакции разложения перекиси водорода [23]. [c.65]

    Известно, что кобальт- и никельмолибденовые катализаторы гидрообессеривания характеризуются различным поведением в основных реакциях гидроочистки гидрообессеривания, гидродеазотирования и гидрирования ароматических соединений. Никелевый катализатор в 2 раза активнее кобальтового в реакции гидрирования, что обуславливает более высокий расход водорода, чем при использовании кобальтовых катализаторов в тех же условиях. Средняя температура в реакторе гидрообессеривания с никелевым катализатором на 5-10°С выше, чем при использовании кобальтового при одной и той же степени превращения сырья. Никелевые катализаторы имеют преимущество в реакции гидродеазотирования, однако, при достаточно высоком давлении водорода кобальтовые катализаторы также дают хорошие результаты. [c.96]

    Приготовление активного никелевого катализатора (катализатора Ренея) [c.372]

    При изучении группы катализаторов Р1 на алюмосиликате и N1 на А12О3 были определены общая поверхность катализатора, поверхность, занятая металлами, и средний размер кристаллитов. На основании этих данных вычислено расстояние между активными центрами платины, которое оказалось равным примерно 1500 А. Между тем расстояние между кислотными центрами составляет только 10 А. Следовательно, металлические активные центры окружены кислотными. В опытах наблюдалась прямолинейная корреляция между константой скорости гидрокрекинга и величиной поверхности, занятой платиной. Был сделан вывод что роль платины — предотвращение (за счет гидрирования) закоксовывания кислотных центров. Активные центры платины могут защитить только близлежащие кислотные центры, поэтому скорость гидрокрекинга коррелирует с величиной поверхности платины, а не с суммарной поверхностью катализатора. В случае никелевых катализаторов картина осложняется взаимодействием никеля с окисью алюминия и с серой сырья. Но защита кислотных центров — не главная функция гидрирующих центров, основной их ролью является облегчение образования карбониевых ионов (см. стр. 121), т. е. образование олефинов. На гидрирующих центрах, по мнению некоторых [c.126]

    Как в гомогенном и рментативном катализе, в гетерогенном катализе наблюдаются явления активации, ингибирования и отравления катализаторов. Отравление катализаторов обусловливается блокировкой активных центров за счет образования прочной химической связи между молекулой каталитического яда и поверхностью катализатора. Так, для платины и ряда других металлов ядами являются HaS, H N, Hg b, OS и др. Никелевые катализаторы теряют свою активность в реакциях гидрирования в результате окисления поверхности металла. Большей частью молекулы каталитических ядов, отравляющих переходные металлы, имеют электроны на несвязывающих орбиталях. За счет взаимодействия несвязывающих [c.635]

    Большинство процессов отравления необратимы, поэтому катализатор в конечном счете выгружают из-за потери им активности. Существует, однако, один практически важный тип процессов отравления, который обратим. Так, например, обратимо отравление алюмоплатиновых, цеолитсодержащих и алюмоникел1>молибденовых катах[изато-ров при обработке их кислородом. Чтобы не допускать отраЕления катализатора, ь принципе всегда можно удалить яд из сырья путем его тщательной очистки или использования форконтакта. Однако стоимость такой очистки может оказаться весьма высокой. Напри)мер, в процессе метанирования на никелевых катализаторах сырье необходимо очищать до содержания в нем сернистых соединений ниже [c.92]

    Процесс ведут в полочном реакторе с несколькими неподвижными слоями катализатора или в трехфазном реакторе, обычно в жидкой фазе, причем значительные количества анилина возвращают в реактор для теплоотвода. Хотя эта реакция в нашей классификации не отнесена к селективному гидрированию, ее следует проводить так, чтобы при гидрировании нитрогруииы не затрагивалось бензольное кольцо. Гидрирование кольца идет довольно легко и сопровождается выделением большого количества тепла. Для предотвращения этой реакции следует избегать повышенных температур, особенно в присутствии активного никелевого катализатора. Температуру нужно поддерживать на сравнительно низком, предварительно выбранном уровне, а перемешиванием необходимо обеспечить равномерное распределение катализатора и водорода в реакторе, чтобы устранить местные перегревы. Можно использовать реакторы, показанные на рис. 2 и 4. [c.119]

    Принципиальная разница между различными нромышленны-ми процессами газификации заключается в выборе соответствующего катализатора для первой ступени газификации. В процессе Газинтан по-прежнему применяется никелевый катализатор с очень высокой активностью и, следовательно, с очень высокой чувствительностью к загрязнению соединениями серы, галогенами, кислородом, свинцом (из тетраэтилсвинца в бензине) и др. Благодаря высокой активности катализатора входная температура смеси паров лигроина с водяным паром на входе в реактор может быть снижена до 400°С. Кроме того, по данным фирмы, минимально допустимое отношение пар-лигроин, используемое в процессе Газинтан , ниже, чем для конкурирующих процессов, [c.107]


Смотреть страницы где упоминается термин Никелевые катализаторы активность: [c.727]    [c.61]    [c.96]    [c.355]    [c.338]    [c.63]   
Препаративная органическая химия (1959) -- [ c.523 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатора активность

Катализаторы активные



© 2024 chem21.info Реклама на сайте