Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты гетероциклических оснований

    Суммируя роль аминокислот как предшественников различных биомолекул, назовем следующие соединения, образующиеся из аминокислот белки, пептиды, биогенные амины, гормоны, антибиотики, кето-, гидрокси- и ненасыщенные кислоты, насыщенные карбоновые кислоты, азотистые основания, гетероциклические соединения. [c.16]

    К соединениям, которые могут титроваться как кислоты (случай 1), относятся карбоновые кислоты, фенолы, барбитураты, сульфонамиды, аминокислоты и др. К соединениям, которые могут титроваться как основания (случай 2), относятся амины, азотсодержащие гетероциклические соединения, амиды, четвертичные аммониевые основания и др. [c.124]


    По этой причине нуклеофильный катализ чаще наблюдается в реакциях фениловых эфиров карбоновых кислот. Эффективными нуклеофильными катализаторами в этих реакциях выступают, например, амины и гетероциклические азотистые основания (пиридин, имидазол). [c.256]

    Жидкий аммиак как основание. Благодаря четко выраженному основному характеру аммиак оказывает сильное влияние на многие соединения. В жидком NH3 ионизируются не только сильные и слабые в воде кислоты, но и некоторые вещества, не проявляющие кислотных свойств или играющие роль слабых оснований в воде. Последние ведут себя в его среде как кислоты (неорганические и карбоновые кислоты, фенолы, амиды и имиды кислот,, гетероциклические соединения, углеводы, углеводороды и др.). Это доказывают, как показал Шатенштейн [37], реакции обмена дейтерием между дейтерированным аммиаком (ND3) и углеводородами. [c.81]

    Многочисленные реакции обмена, окисления — восстановления, аммонолиза, реакции неметаллов (фосфора, серы, иода) и металлов, растворимых в КНз, органических соединений (спиртов, карбоновых кислот, альдегидов и кетонов, алкилсульфокислот, алкил- и арилсульфоновых кислот, амидов и амидинов, гетероциклических азотсодержащих оснований) и др., протекающие в жид- [c.85]

    Родственные реагенты часто сгруппированы вместе например, амины и гетероциклические основания, карбоновые кислоты, красители, галогениды (неорганические) в неводных растворах, гидразины, неорганические кислоты и т. д. Отдельные реагенты, относящиеся к указанным группам, даны в содержании книги. Обзоры условий титрования и т. п. сделаны по двум важным группам кислоты и основания и тяжелые органические анионы и катионы , однако примеры их использования относятся к каждому реагенту в отдельности (гидроокиси щелочных и щелочноземельных металлов, хлорная кислота и т. д.). [c.69]

    Алифатические, ароматические и гетероциклические основания (см. № 8, 19, 25) соли карбоновых кислот (см. № 10) [c.349]

    Реакции нейтрализации используют при титровании неорганических и карбоновых кислот, фенолов, оксипроизводных гетероциклических соединений, оснований, солей, гидрогалогенидов слабых органических оснований, аминов, алкалоидов, оснований Шиффа, гетероциклических оснований, аминокислот, фармацевтических и медицинских препаратов и т. п. Например  [c.41]

    Разработанные и изученные в настоящей работе методы разделения и анализа могут найти значительно более широкое применение для характеристики азоторганических соединений, их смесей и различных горючих ископаемых и их производных. При этом, как было упомянуто выше, необходимо помнить, что исследование азоторганических соединений нефтей обычно значительно упрощается, благодаря явному преобладанию в них третичных ароматических гетероциклических оснований и третичных ароматических амидов карбоновых кислот. При изучении других каустобиолитов мы сталкиваемся с гораздо большим разнообразием форм азота, требующим от исследователя применения полной схемы разделения и анализа. [c.79]


    Наиболее распространенными типами растворителей являются спирты (бутиловый, пропиловый, амиловый, тетрагидрофуриловый и т. д.), карбоновые кислоты алифатического ряда (уксусная, муравьиная, изомасляная), фенолы (фенол, крезолы) и гетероциклические основания (коллидин, лути-дин, пиридин, хинолин). Реже применяются сложные эфиры (этилацетат), простые эфиры и кетоны. Углеводороды используют лишь в отдельных случаях. [c.456]

    К соединениям, которые можно титровать как кислоты, относятся кислотные галогениды, ангидриды кислот, карбоновые кислоты, аминокислоты, энолы, такие, как барбитураты и ксантины, ИМ1ИДЫ, фенолы, пирролы, сульфаниламиды. К соединениям, которые можно титровать. как основания, относятся амины, азотсодержащие гетероциклические соединения, четвертичные аммониевые соединения, щелочные соли органических кислот, щелочные соли неорганических кислот и некоторые соли аминов. Многие соли галоидоводородных кислот можно титровать в уксусной кислоте или уксусном ангидриде после прибавления ацетата. ртути, который удаляет ион галоида переведением а неионизированный комплекс га-логенида ртути. Гидрохлориды слабых оснований, не содержащие группировок, способных ацетилироваться, можно та.кже титровать в уксусном ангидриде без добавления ацетата ртути, используя в качестве индикатора малахитовый зеленый или кристаллический фиолетовый. Титрования, проводимые при избытке уксусного ангидрида, следует приме- [c.150]

    Карбоновые кислоты нуклеозидов (ПО) получены из свободных нуклеозидов с использованием кислорода и платины [135] или комплекса пиридин-триоксид хрома [136]. Однако в последнем случае выходы недостаточно высоки из-за сопутствующего окисления гидроксильной группы при С-3, сопровождающегося катализируемым основанием р-элиминированием гетероциклического основания из З -кетонуклеозида. Окисление 2, 3 -0-изопропи-лиденаденозина перманганатом калия в щелочных условиях дает с хорошими выходами 5 -карбоновую кислоту [137], однако этот метод ограничен адениновыми нуклеозидами, поскольку, как будет видно далее, все другие гетероциклические группы обычных нуклеозидов легко окисляются перманганатом. [c.111]

    Пирролы, имидазолы, пиразолы и бензоконденсированные аналоги, обладающие NH-группой, способны депротонироваться (значение рА а лежит в интервале 14-18). Следовательно, эти соединения могут быть полностью превращены в соответствующие анионы при действии сильных оснований, таких, как гидрид натрия или -бутиллитий. Незамещенный пиррол ( рК . 17,5) проявляет кислотные свойства в гораздо большей степени, чем соответствующий насыщенный аналог пирролидин (рА 44). Кислотность индола (рА 16,2) значительно выше, чем кислотность анилина (рА 30,7). Такое различие в кислотности можно объяснить возможностью делокализации отрицательного заряда в анионе ароматического гетероцикла. Введение электроноакцепторных заместителей или дополнительного гетероатома, особенно иминного атома азота, существенно повышает кислотные свойства гетероциклических соединений. Прекрасный иллюстрацией такого влияния может служить тетразол, рА которого (4,8) имеет тот же порядок, что и рК карбоновых кислот [c.47]

    Синтезы тионафтенов сводятся обычно к замыканию гетероциклического кольца на основе имеющегося ароматического ядра. Сам тионафтен впервые был получен при нагревании о-меркапто-Р-хлорстирола со спиртовой щелочью [3]. Более общий метод синтеза основан на восстановлении тио-индоксилов(И)или соответствующих им 2-карбоновых кислот цинком и уксусной кислотой [1,4,5]. Этот метод, вероятно, применяется чаще всего, [c.112]

    У большинства природных оснований азотный атом, входит в состав гетероцикла. Трехзвенный член гетероциклического ряда — азиридин — встречается изредка как фрагмент более сложных молекул. Отдельного классификационного типа природные азиридины не образуют. Наименьший цикл, дериваты которого можно выделить в отдельную группу — четырехзвенный азет. Простое его производное азетидин-2-карбоновая кислота 6.39, найдена во многих растениях. Выяснен способ ее биосинтеза из аминокислоты метионина по схеме [c.437]

    Реакцию проводят в эфире, в атмосфере азота.В основном используют хлор-, бром- или иодзамвщенный эфир уксусной, пропионовой или масляной кислоты. В качестве основания применяют зтилат натрия, металлический натрий, его амид, трет.-бутилат калия. Выходы составляют от 20 до 705 . В реакцию вступают алифатические, алициклические, ароматические, жирноароматические и гетероциклические альдегиды и кетоны. Побочнылш процессами являются кротоновая конденсация исходных карбонильных соединений, перегруппировка продуктов реакции в эфир оь- или р-кетокислоты, 0-или С-алкилирование карбонильного соединения. Последний процесс особенно характерен для эфиров бром- и иодзамещенннх карбоновых кислот. [c.68]

    Основные научные работы относятся к химии гетероциклических соединений. Открыл (1950) реакцию алкилирования метиленовых оснований ряда бензотиазола, тиа-зола и нафтотиазола галогеналки-лами. Разработал (1956) способ синтеза бензотиазолилалкил(арил)-карбоновых кислот конденсацией о-аминофенола с ангидридами двухосновных кислот восстановлением эфиров бензотиазолилалкил-(арил)карбоновых кислот получил соответствующие карбинолы. Установил (1964) строение продуктов присоединения а-галогенкетонов и хлорангидридов карбоновых кис лот к метиленовым основаниям ряда бензотиазола. Получил (1964) [c.32]


    Для синтеза ряда гетероциклических соединений были использованы реакции, основанные на нуклеофильной реакционной способности тиомочевин [1—3, 434] (см. выше), тиосемикарбазидов [1—3, 442] и тиокарбогидразидов [1—3, 441], Некоторые приме ры обычно используемых синтезов пятичленных гетероциклов с участием тиосемикарбазидов приведены ниже (уравнения 262— 264). В нейтральных условиях 1-ацилтиосемикарбазиды (491) могут циклизоваться, образуя смесь соединений (492) и (493) в особых условиях можно получить либо (492), либо (493) [442, 457]. При нагревании 2-замещенных тиокарбогидразидов (490 == ЫНг) с карбоновыми кислотами образуются соединения (493 К = ЫНг) [441]. 1-Замещенные тиосемикарбазиды, не имеющие заместителей в положении 4, ацилируются в это положение, образуя в условиях циклизации соединение (494) [442]. В реакциях 1,4-дизамещенных тиосемикарбазидов с соответствующими ацилирующими агентами непосредственно образуются ме-зоионные соединения (495) [442]. [c.670]

    Как показывает опыт, в среде органических растворителей можно определять первичные, вторичные и третичные алифатические и ароматические амины, а также их смеси, основания Шиффа, первичные амины ряда сульфамидов, органические основания, содержащие гетероциклический азот пурин, пиридин, тиазол, гид-разоны, гидразиды, оксазолины, триазолы, ниразолоны, хиноли-ны, бензимндазолы и их производные, а также алкалоиды и их смеси, ряд органических кислот, которые в среде протогенных растворителей проявляют основные свойства, например, пиридинкарбоновые и аминокислоты нитро-, галоген- и аминопроизводные карбоновых кислот, фенолы и их производные, енолы, имиды, тиолы, амиды, меркаптаны, соли алифатических аминов и нитросоединения.Нанример, динитробензол титруется как двухосновная, а пикриновая кислота как трехосновная кислоты в среде этилендиамина. В среде неводных растворителей титруют также спирты и углеводороды, смеси карбоновых кислот с фенолами и минеральными кислотами и т. д. [7]. [c.296]

    Малые количества многих гетероциклических оснований можно обнаружить с помощью реакций (1) и (2), с последующей экстракцией полученных дитиокарбаминатов меди бензолом. Некоторые замещенные пиридина и хинолина не дают этой реакции. В качестве примеров можно назвать пиридин-2,3 (3,4)-дикарбоновые кислоты, пиридин-2-карбинол-6-карбоновую кислоту, акридин, седулон, 6-нитрохинолин, витамин В (пиридоксин). Восстановленные растворы первых четырех названных соединений не изменяются при добавлении сероуглерода и аммиачного раствора солей меди. Восстановленный 6-нитрохинолин и витамин В образуют коричневые осадки, не извлекающиеся бензолом. Вероятно, гидрофильные группы в этих гетероциклах препятствуют растворению дитиокарбаминатов меди в бензоле. Кроме того, ОН- и СООН-группы в пара-положении к атому азота в ядре затрудняют восстановление. [c.404]

    Окисление рибо- и дезоксирибонуклеозидов до 5 -карбоновых кислот проводилось также с использованием системы хромовый ангидрид — пиридин при комнатной температуре. 3 -Гидроксильная группа довольно устойчива к окислению, поскольку 5 -0-три-тилтимидин не подвергается воздействию этого окислителя. При действии этого реагента на цетримидную (цетавлон) соль дезоксирибонуклеиновой кислоты не было обнаружено спектроскопических изменений в выделенной ДНК, что указывает на то, что гетероциклические основания не окисляются в применяемых условиях [159]. [c.51]

    Как было указано выше, основные функции, имеющие константу диссоциации вплоть до 10 удобно определять титрованием кислотой в водных растворах. Развитие техники неводной титриметрии значительно расширило область анализа основных функций. Ниже перечислены типы органических соединений, которые были определены как основания в неводных средах амин > , кeтимин алкалоид 215-218 Ы-гетероциклическое соединениеосновная ионообменная смола амид карбоновой кислоты 2 , мочевина , гидразид аминокислота соль амина со слабой кислотой 231, гидрогалогенид амина нитрат амина з2, карбоксилат щелочного металла 234, тиолтиомочевина сульфамид сульфоксид , производное фосфина В качестве титрантов для всех соединений, кроме последнего, использовали раствор хлорной кислоты, а производное фосфина титровали соляной кислотой. [c.401]

    Дикарбоцианины и поликарбоциа.нины получаются путем конденсации четвертичных солей гетероциклических оснований, содержащих активную метильную группу в а- или т-положении к атому азота, с винилеиовыми гомологами ортоэфиров (I) и замещенных амидинов карбоновых кислот (II) [c.404]

    Неокотоны представляют собой растворимые натриевые соли сложных эфиров нерастворимых азокрасителей — производных азотолов. Для получения их в качестве этерифицирующих агентов применяют сульфо-карбоновые кислоты ароматических, жирных и гетероциклических соединений, а также ароматические ди- и трисульфокислоты и аналогичные соединения, у которых после образования сложного эфира остается по крайней мере одна свободная солеобразующая группа. Ацилирование оксигруппы нерастворимого азокрасителя осуществляют нагреванием с хлорангидридами этих кислот в присутствии третичных оснований (чаще всего пиридина) или взаимодействием красителя с многоосновной кислотой в пиридиновом растворе в присутствии хлоридов фосфора. [c.343]

    Углеводороды алканы, алкены, алкины, диеновые углеводороды, ароматические углеводороды (физические и химические свойства, способы получения). Представление о строении циклоалканов. Кислородсодержащие соединения спирты одноатомные и многоатомные, фенол, альдегиды, карбоновые кислоты, сложные эфиры (физические и химические свойства, способы получения и области применения, медико-биологическое значение). Азотсодержащие соединения амины алифатические и ароматические, аминокислоты (физические и химические свойства, способы получения, медико-биологическое значение). Строение отдельных представителей аминокислот глицина, аланина, цистеина, серина, глутаминовой кислоты, лизина, фенилаланина и тирозина. Строение и химические свойства гетероциклических соединений (пиридин, пиррол, пиримидин, пурин). Строение пиримидиновых и пуриновых оснований цитозина, урацила, тимина, аденина, гуанина. [c.758]


Смотреть страницы где упоминается термин Карбоновые кислоты гетероциклических оснований: [c.375]    [c.375]    [c.140]    [c.72]    [c.591]    [c.669]    [c.72]    [c.591]    [c.669]    [c.390]    [c.96]    [c.80]    [c.672]   
Капельный анализ органических веществ (1962) -- [ c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота гетероциклические

Основания и кислоты



© 2025 chem21.info Реклама на сайте