Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрофотометрия никеля

    Так, определение свинца, меди, железа и никеля в ряде жиров возможно с помощью атомно-абсорбционной спектрофотометрии. Эти металлы могут являться обычными загрязнениями или попадать в жиры при каталитическом гидрировании. В нашей стране предложен метод определения массовой доли никеля в гидрированных жирах и жирных кислотах. Он основан на прямой экст- [c.96]


    Для определения кобальта в растворе, содержащем никель и железо, после экстракции соединения кобальта с 2-нитрозо-1-нафтолом хлороформом (см. стр. 161) хлороформный экстракт промывают последовательно раствором соляной кислоты двумя порциями по 20 мл каждая, один раз 10 мл воды и затем двумя порциями раствора щелочи по 5 мл каждая и 5 мл воды. Так как при этой операции освобождается некоторое количество реагента, которое входило в комплексное соединение железа и никеля, то раствор хлороформа еще раз последовательно промывают раствором щелочи и водой. Хлороформный слой через сухой фильтр переносят в градуированную пробирку емкостью 10 мл. Измерение оптической плотности растворов проводят на фотоэлектроколориметрах ФЭК-56, ФЭК-57 или ФЭК-60 при X = 365 нм или спектрофотометрах при X 307 нм. Содержание кобальта находят по градуировочному графику (см. стр. 162). [c.162]

    Для определения кобальта в алюминии берут две навески металла по 1 г, растворяют каждую в 20 мл едкого натра, прибавляют посте пенно раствор лимонной кислоты до pH 8. Раствор переносят в мер ную колбу емкостью 50 мл и доводят объем раствора водой до метки В стакан емкостью 50 мл переносят 10 мл приготовленного раствора добавляют 2 мл раствора 2-нитрозо- 1-нафтола, нагревают почти до ки пения, охлаждают и переносят раствор в делительную воронку емко стью 50 мл. К этому раствору приливают 5 мл хлороформа, оставляют стоять 15 мин и экстрагируют соединение кобальта в течение 20 мин на механическом вибраторе. Водный слой отбирают пипеткой (используя резиновую грушу). Для удаления избытка реагента хлороформный слой обрабатывают 5 мл щелочи в течение 20 мин, используя механический вибратор, затем промывают водой. Если имеется примесь железа, то его комплексное соединение разрушается раствором щелочи при удалении избытка реагента из хлороформа. Для разрушения комплексных соединений никеля и меди, которые могут также содержаться в качестве примесей, раствор хлороформа промывают 5 мл соляной кислоты в течение 5 мин и снова водой, используя механический вибратор. Так как при этой операции освобождается некоторое количество реагента, которое входило в комплексные соединения меди и никеля, то еще раз раствор хлороформа промывают последовательно раствором щелочи (1 мл) и водой (5 мл). Раствор хлороформа переводят в мерный цилиндр или градуированную пробирку, добавляют хлороформ до 5 мл и измеряют оптическую плотность раствора на спектрофотометрах при к 307 нм. Раствор сравнения готовят в условиях, указанных на стр. 162. [c.164]


    При определении натрия в сырье для ферритов и в ферритах изучали влияние Fe, Мп, Mg, Zn, Сг, Ni на эмиссию натрия [61, 213, 438]. При использовании спектрофотометра на основе монохроматора УМ-2 в пламени ацетилен—воздух на интенсивность излучения натрия не влияют цинк, магний и никель при их концентрации в растворе до 10 мкг/мл. Предложена следующая методика [61]. [c.168]

    При определении кобальта, никеля и меди при их совместном присутствии измерения экстинкции на спектрофотометре проводят при pH 9 0,3. Буферный боратный раствор готовят смешиванием 85,6 мл 0,65 М раствора тетрабората натрия с 14,4 мл 0,1 М раствора соляной кислоты. [c.197]

    Влияние указанных элементов устраняют либо предварительным их отделением от титана, либо их введением в раствор сравнения. В последнем случае необходимо первоначально установить содержание элементов в анализируемой пробе. При использовании фотоэлектроколориметров и особенно спектрофотометров метод становится более избирательным по сравнению с визуальным определением. Например, влияние никеля, хрома значительно уменьшается. [c.122]

    Для определения мышьяка в никеле предложен метод атомноабсорбционной спектрофотометрии [11831. [c.168]

    Определение кобальта в перегнанной азотной кислоте. Юг азотной кислоты упаривают в кварцевой чашке почти досуха. К остатку добавляют 10 мл фосфатного буфера (pH 6,10) ж 2 мл 0,02%-пого водного раствора Р-нитрозо-а-пафтола, предварительно перекристаллизованного из воды. Раствор нагревают почти до кипения, охлаждают и переносят в делительную воронку емкостью 100 мл. К полученному раствору приливают 5 мл хлороформа экстрагируют при механическом встряхивании раствора в течение 10 мин. водный слой отбирают пипеткой. Для реэкстракции реагента хлороформный раствор промывают при встряхивании в течение 20 мин. 4 N раствором щелочи. Последнюю операцию повторяют. Затем для разрушения комплексов меди и никеля раствор хлороформа промывают соляной кислотой. После этой операции экстракт еще содержит некоторое количество реактива, которое ранее было связано с медью и никелем, поэтому органическую фазу еще раз промывают раствором щелочи. Оптическую плотность экстракта измеряют на спектрофотометре при 307 ммк. Нулевым раствором служит раствор, проведенный через все стадии анализа, но не содержащий азотной кислоты. [c.301]

    Освоение приемов работы с фотоэлектроколориметром, количественное определение никеля с диметилглиоксимом, определение концентрации органического красителя Освоение приемов работы со спектрофотометром СФ-4 снятие спектров поглощения бензойной кислоты, нафталина, бета-нафтола и органических красителей.  [c.235]

    Другие отечественные атомно-абсорбционные спектрофотометры атомно-абсорбционный спектрофотометр С-302 для определения микроколичеств железа, меди, цинка, кобальта, никеля, висмута, кальция и других элементов автоматизированный атомно-абсорбционный спектрофотометр АА-А для определения кальция и меди с повышенной чувствительностью Сатурн — пламенный атомно-абсорбционный полуавтоматический регистрирующий спектрофотометр для определения 32 элементов Спектр-1 — атомно-абсорбционный спектрофотометр для экспрессного определения более 40 элементов чувствительностью 0,2 мкг/мл. [c.189]

    Электролиз при регулируемом потенциале считается также лучшим методом удаления мешающих элементов из образцов перед анализом их методами спектрофотометрии, полярографии и др. Описанные выше электрогравиметрический и кулонометрический методы как раз и могут быть использованы для этих целей. В таких случаях сначала проводят электролиз для разделения элементов, а затем в оставшемся растворе определяют нужный металл. Приведем пример. Лингейн анализировал методом электролиза при регулируемом потенциале различные сплавы меди, применяя ртутный катод. Из солянокислых растворов медь выделялась вместе с сурьмой и висмутом. В оставшемся растворе автор полярографически определял свинец и олово, после чего осаждал эти элементы электролизом при более отрицательном значении потенциала. Наконец, после этого вторичного электролиза в оставшемся растворе были определены никель и цинк. Лингейн з приводит также и другие примеры избирательного осаждения с использованием ртутного катода. [c.355]

    Спектрофотометр атомноабсорбционный для определения микроколичеств железа, меди, цннка, кобальта, никеля, висмута, кальция и других элементов [c.234]

    Часть определений осуществлялась фотометрическими и спектрофотометрическими методами определение железа в серной кислоте и медном купоросе, малых количеств мышьяка, сурьмы, висмута, никеля, олова и фосфора в различных продуктах. Применяли фотоэлектроколориметры ФЭК-56, ФЭК-Н-57, спектрофотометр СФ-4А. [c.151]

    Интенсивность окраски раствора измеряют, используя фотометр, фотоколориметры ФЭК-56, ФЭК-Н-54, ФЭК-Н-57 или спектрофотометры СФ-4, СФ-5 и СФ-2М, если определяют малые концентрации никеля. Раствором сравнения является хлороформ. [c.162]


    Атомно-абсорбционная спектрофотометрия. III. Определение никеля в железе и стали. [c.235]

    Перед испытанием готовят эталонные растворы органических соединений ванадия, молибдена, кобальта и никеля в топливе и вольфрама в воде в интервале концентраций этих металлов 1 Ю" - 10 % (масс.). Пробу топлива тщательно перемешивают и сжигают в количестве 7-8 мл/мин в пламенах воздух - ацетилен или оксид азота (N2 О)-ацетилен в режиме, указанном в табл. 18 (для спектрофотометра 1Ь-453). Для определения вольфрама сжигают водный раствор сухого остатка испьггуемого топлива. Перед растворением водой остаток обрабатывают раствором гидроксида натрия. [c.146]

    Добавляют 5 мл раствора а-фурилдиоксима, 10 мл буферной смеси и доводят pH раствора до 8,5—9,5 по универсальной индикаторной бумаге, прибавляя по каплям раствор ЫаОН если раствор будет иметь щелочную реакцию >9,5, добавляют несколько капель уксусной кислоты. Дают раствору постоять 15 мин и образовавшееся соединение диоксимата никеля экстрагируют в течение 10 мин на механическом вибраторе двумя порциями хлороформа по 5 мл каждая. Перед второй экстракцией добавляют в воронку еще 5 мл раствора а-фурилдиокси-ма. Обе порции хлороформного раствора сливают в градуированную пробирку емкостью 10 мл или мерную колбу емкостью 25 мл и доливают до метки хлороформом. Измерение оптической плотности эталонных растворов производят на фотоэлектроколориметрах ФЭК-56, ФЭК-60 или спектрофотометрах при А, 438 нм (рис. 55) и строят градуировочный график. В качестве раствора сравнения используют хлороформ, которым обработан раствор холостого опыта . [c.188]

    Для приготовления эталонных растворов берут пять делительных воронок емкостью 50 мл, помещают в каждую 5 мл воды стандартный раствор никеля в количестве (мкг) 0,5 0,7 0,9 1,1 1,5, добавляют 3 мл гептоксима, 10 мл ацетатного буферного раствора и оставляют стоять. Через 30 мин добавляют 5 мл хлороформа и содержимое воронки встряхивают в течение 15 мин на механическом вибраторе водную фазу отбрасывают. Экстракт промывают 10 мл 1 н. раствора едкого натра в течение 15 мин и один раз водой при встряхивании на механическом вибраторе, после этого переводят его в сухую градуированную пробирку. Оптическую плотность экстракта измеряют в тефлоновой кювете (/ = 10 см) при A263 нм на спектрофотометрах различных марок. Раствором сравнения служит хлороформ, которым обработан раствор холостого опыта . Строят градуировочный график по экспериментальным данным, обработанным методом наименьших квадратов. [c.192]

    Содержание больших количеств кобальта осложняет непосредственное определение никеля а-диоксимами, поэтому необходимо предварительно разделение этих элементов. Для этого используют метод отделения больших количеств кобальта в виде роданида экстракцией этилацетатом. Никель определяют ниоксимом турбидиметрическим методом или фотометрически, используя хинолин для растворения ниоксимата никеля [48]. Метод был доработан в лаборатории спектрофотометрии кафедры аналитической химии МГУ. [c.193]

    Для приготовления эталонных растворов в делительные воронки емкостью по 100 мл вводят в каждую 20 мл воды, стандартный раствор, содержащий никель в количестве (мкг) 0,0 1,0 2,5 5,0 7,0 10,0 доводят рн раствора до 8—10 по универсальной индикаторной бумаге добавлением раствора едкого натра, вносят 1 мл раствора ниоксима и оставляют стоять на 15 мин. Затем добавляют 5 мл хлороформа и встряхивают содержимое воронок в течение 10 мин на механическом вибраторе. Хлороформный слой отделяют и фотометрируют при Я, 263 нм на спектрофотометрах различных марок. Для получения раствора сравнения используют хлороформ (первая воронка). Градуировочный график строят по экспериментальным данным, обработанным методом наименьщих квадратов. [c.194]

    Метод ИК-спектроскопии применялся для решения многих сложных задач, связанных с промышленными загрязнениями и защитой окружающей среды. Например, с помощью интерференционного спектрофотометра был выполнен анализ дымовых газов с очень низким содержанием примесей [57]. Высокотоксичный карбонил никеля бьш определен в количестве, меньшем, чем 1 часть на миллиард, в присутствии 10 -кратного избытка мешающего СО [74]. Бейкер и Карлсон [7] применили интересный метод анализа гексафторацетона (ГФА) в воздухе. Они добились высокой аналитической чувствительности, введя ГФА в реакцию с К2СО3 и HjO, в результате которой получается H F3 последний обнаруживается при гораздо меньшей концентрации, чем ГФА. Пределы обнаружения многих загрязнений можно понизить до 0,05 — 1 части на миллион осушкой (со специальным осушителем) и повышением давления воздуха в кювете. Описан спектр, зарегистрированный в 20-метровой кювете при давлении 10 агм [6]. Для определения I2F2 в атмосфере (110 частей на триллион, что эквивалентно содержанию у поверхности земли) был проанализирован с помощью моделирования на ЭВМ [81] солнечный спектр в области 800-1250 см- . [c.273]

    Методом атомпо-абсорбционной спектрофотометрии определяют Sb в различных материалах, в том числе в алюминии и его сплавах [954, 1469], геологических материалах, минеральном сырье и горных породах [97, 732, 863, 954, 1338, 1391, 1485, 1638], железных рудах, железе, чугуне, стали и ферросплавах [888, 954, 1069, 1140, 1141, 1601], меди и медных сплавах [1392, 1534, 1673], мышьяке и его сплавах [1534], никеле, никелевых сплавах и соединениях [954, 955, 1594], олове и его сплавах [1354], оловянносвинцовых припоях [1166], свинце, его сплавах и солях [267, 268, 1354, 1450], галенитах [1387], сплавах редких и цветных металлов [1140, 1321], полупроводниковых материалах [265, 1122], рудах [97, 1511, 1601, 1638], почвах [1391, 1594, 1638], силикатных материалах,. керамике и стеклах [652, 1587], чистых веш,ествах [315],. солях ш,елочных и ш,елочноземельных металлов [387], природных и сточных водах [1123, 1209, 1213, 1367], плутонии [1622], солях цинка и кадмия [387], синтетических волокнах [1321], пиш,евых продуктах [1367], пистолетных пулях [948], добавках к нефтепродуктам [1563], химических реактивах и препаратах [264—266, 268, 387]. [c.93]

    Определение кобальта измерением оптической плотности экстракта в ультрафиолетовой области спектра [1011]. К анализируемому раствору, содержащему 0,2—10 мкг[мл Со и имеющему pH от 3,0 до 5,3 (устанавливают необходимое pH растворами хлорной кислоты и гидроокиси аммония), прибавляют 25 мл 44%-ного раствора роданида аммония, разбавляют водой до 50 мл и экстрагируют двумя порциями по 20 мл изоамилового спирта, насыщенного роданидом аммония. Экстракт разбавляют изоамиловым спирто.м до 50 мл и измеряют оптическую плотность экстракта на спектрофотометре При длине волны 312 ммк. Определенню не мешают 5 мкг никеля, 10 мкг ванадата илн меди, 25 мкг свинца, 50 чкг иодата, 75 мкг марганцп, 100 мкг молибдата, люминия и цинка в 1 мл раствора. Мешают ионы тре.хвалентного железа, уранила, трехвалентного и шестивалентного хрома, ферроцианида, олова, иит-рат-ионы и титан. [c.157]

    АА-спектрофотометр с газоразрядным атомизатором типа АЮшзоигсе для прямого анализа металлов, сплавов и других электропроводящих материалов на содержание легирующих компонентов и микропримесей, а также состава и толщины металлических покрытий (чистые металлы и сплавы на основе железа, никеля, кобальта, алюминия, меди, свинца и др.). [c.929]

    Наиболее подробно изучались и разрабатывались методики определения в нефтях ванадия. Для этой цели применялись метод рентгеновской флуоресценции с предварительным концентрированием ванадия (а также никеля и железа) с дитио-карбаматом метод газожидкостной хроматографии (до 0,1 м на 1 г нефти) с пламенно-ионизационным детектором хелатов оксида ванадия с фторированными дикетона-ми (с одновременным определением меди и никеля), а также хелатов ванадия (III) и различных фторированных дикетонов метод спектрофотометрии в видимом свете (на волне 500 нм) метод атомно-абсорбционной спектроскопии пирокатехиповый метод каталитический метод, основанный на спектрофотометрическом определении продукта реакции окисления галловой кислоты бромат-ионом, катализируемой ионами ванадия (другие элементы, присутствующие в нефтях, не мешают определению ванадия этим методом). [c.85]

    Для повышения точности анализа необходимо заранее на том же спектрофотометре определить коэффициенты погашения ионов перманганата и биохромата при каждой из указанных длин волн. В случае присутствия в образце в значительном количестве ионов ванадия, кобальта, никеля или железа необходимо введение поправки на их свего-поглощение. Сведения о содержании этих элементов в образце даст преподаватель. С подробностями проведения анализа следует ознакомиться в статье, приведенной в ссылке 2. [c.318]

    Измерения поглощения света производили на спектрофотометре Кёнига — Мартенса, описанном ранее [II, стр. 5]. Только для некоторых измерений в красном свете применяли ступенчатый фотометр Пульфриха с красным фильтром, соответствующим длине волны 720 мц. В качестве источника света использовали лампу Осрэма Хеймкино на 100 вт ее можно было поместить непосредственно перед щелью фотометра, поэтому, несмотря на малую мощность, она удовлетворяла требованиям эксперимента. Трубки поглощения имели длину 2 или 5 см. Трубку компенсации наполняли раствором нитрата аммония той же концентрации, как и аммиачный раствор никеля. Так как даже самый чистый технический водный раствор аммиака содержит пыль, концентрированный очищенный от пыли исходный раствор готовили из аммиака, профильтрованного через бумажный фильтр. Можно добавить, что для опытов использовали технический препарат нитрата никеля, не содержащий кобальта. [c.197]

    В случае аммиачных растворов никеля были измерены спектры поглощения в видимой области. Растворы, содержащие различные соединения никеля от иона аквоникеля до иона гексамминникеля были изучены при помощи спектрофотометра [c.298]

    Определение никеля фотоколориметрическим методом. Метод основан на реакции образования растворимого окрашенного в красный цвет комплексного соединения никеля с диметилглиоксимом в щелочной среде в присутствии окислителя. Состав образуемого комплекса пока полностью не установлен. Определению мешает большой избыток окислителя, так как он может вызвать обесцвечивание раствора. Определению мешают также железо, хром и марганец, поэтому при определении их связывают в растворимые бесцветные комплексные соединения сегнетовой солью (виннокислый калий-натрий). В этих условиях определению не мешают кобальт до 1,5%, молибден до 3%, хром до 18%, вольфрам до 18 %, медь до 2%, ванадий до 1 %. Измерение интенсивности окраски можно проводить визуальным методом, методом шкалы эталонных растворов, на фотоколориметре и спектрофотометре. [c.308]

    Для прямого определения микропримесей металлов в каменном угле образец измельчают в шаровой мельнице, просеивают через сито с размером отверстий 44 мкм и смешивают с деионизированной водой при концентрациях 0,01 — 1%. Для лучшего смачивания угольного порошка водой в смест добавляют несколько капель 10%-иого раствора ПАВ тритона Х-100. Полученную суспензию перемешивают мешалкой с покрытием из фторопласта п вводят в воздушно-ацетиленовое лламя спектрофотометра 1Ь-153 обычным порядком. В качестве эталонов используют водные растворы. Натрий и железо определяют по эмиссионным спектрам кальций, цинк и никель — по абсорбционным спектрам. При введении в суспензию раствора тритона Х-100 в спектре появляется линия натрия. Это объясняется выделением натрия с поверхности стеклянного сосуда. При горении угольных частиц в пламени появляются оранжевые полоски. Сигналы абсорбции и эмиссии воспроизводятся удовлетворительно, несмотря на сильные шумы. Отношение сигнала к шуму для угольных суспензий примерно вдвое меньше, чем для водных растворов. При определении кальция один образец постоянно давал абсорбционный сигнал в три раза сильнее, чем можно было ожидать, а другой образец при определении цинка — в 10 раз сильнее ожидаемого. Причина этой аномалии не установлена. Степень рассеяния света частицами угля определялась по нерезонансной линии свинца 220,4 нм при концентрациях суспензии 0,8—1,5%. Во всех случаях абсорбционный сигнал едва регистрировался. Авторы рекомендуют для построения градуировочных графиков использовать эталоны в виде суспензий [206], [c.223]

    В основу данного аналитического метода положена способность ванадия, никеля и железа образовывать окрашенные комплексы с дифенилбензидином, диметилглиоксимом и о-фенантролином соответственно. Спектрофотаметрирова-ние проводили на спектрофотометре СФ-4А, [c.49]

    Приборы с кварцевой оптикой дают возможность работать в ультрафиолетовой и инфракрасной областях спектра, что позволяет измерять поглощение бесцветных и окрашенных а слабо-желтый цвет растворов. Как уже отмечалось (см. пункт 1), воз.можность работать в максимумах на кривых светопоглощения значительно увеличивает чувствительность применяемой хи.мической реакции и позволяет определять малые концентрации с большой точностью. Например, для определения ультрамалых количеств никеля а-бензил-диокспмом измерение проводят в области его максимального поглощения в ультрафиолетовой области при % 273 ммк (стр, 1.57), используя спектрофотометр СФ-4. Определение кобальта 2-нитрозо-1-нафтолом при Я 307 ммк позволяет определять ультрамалые количества кобальта (стр. 172). [c.21]

    Хлороформенный слой промывают двумя порциями (по 5 мл каждая) 1 н. раствора едкого натра. Содержимое воронки встряхивают в течение 2 мин после добавления каждой порции. Хлороформенную фазу переносят в мерный цилиндр и доводят хлороформом объем раствора до 5 мл. Полученный раствор хлороформа переводят в кювету спектрофотометра и измеряют его светопоглощение при К 275 ммк. В качестве нулевого используют раствор хлороформа, которым обработан раствор, содержащий все реагенты, кроме соли никеля, и прошедший все стадии, описанные выше. В за-Ексимости от содерн ання никеля готовят эталонные растворы (стр. 164). [c.167]


Смотреть страницы где упоминается термин Спектрофотометрия никеля: [c.142]    [c.251]    [c.129]    [c.63]    [c.157]    [c.168]    [c.198]    [c.20]    [c.162]    [c.199]    [c.215]    [c.217]    [c.218]    [c.219]    [c.223]    [c.223]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрофотометр

Спектрофотометрия



© 2025 chem21.info Реклама на сайте