Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характеристика и свойства катализаторов

    Для более полной характеристики свойств катализатора указывают также величину конверсии сырья в объемных процентах (100% минус остаток от перегонки). [c.155]

    Характеристика свойств катализатора до и после перегрева [c.204]

    В тех случаях, когда коэффициенты р в уравнениях (2) и (3) изменяются с температурой и на разных образцах катализаторов или сырья получаются неодинаковыми, судить об активности катализаторов и способности сырья к расщеплению по константам а уже нельзя. В этих условиях достаточно простое и точное определение относительных активностей катализаторов и способности сырья к расщеплению дает отношение объемных скоростей, при которых на сравниваемых катализаторах или образцах сырья достигается одинаковая степень превращений в одних и тех же температурных условиях. Однако указанное отношение не постоянно и может изменяться с углублением процесса. Для полной характеристики свойств катализаторов в этих случаях целесообразно строить несколько кинетических изо- [c.325]


    В настоящее время имеются необходимые методические разработки и указания по способам анализа, позволяющие получать практически исчерпывающие характеристики каталитических и эксплуатационных свойств катализаторов с учетом специфических особенностей их назначения и применения. Однако эти методики разбросаны по различным изданиям и инструкциям для внутреннего пользования и поэтому не всегда доступны. Не систематизированы также и методы анализа катализаторов, применяемые за рубежом и представляющиеся весьма полезными для практических и исследовательских целей. [c.8]

    Наиболее важными свойствами катализаторов являются их каталитическая активность, селективность действия, стабильность, а также регенерационная характеристика. [c.140]

    Метод состоит в шестичасовой обработке катализаторов водяным паром при 750° С. За показатель стабильности принимают величину остаточной активности, определенную стандартным методом. Дополнительно для более полной характеристики изменения свойств катализаторов при длительной эксплуатации одновременно с величиной индекса активности определяют выход газа и остатка, кипящего прн температуре выше 200° С, в процентах на крекируемое сырье. Полученные результаты сопоставляют с соответствующими параметрами исходных образцов катализаторов до их обработки. [c.166]

    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]


    В процессах принятия решения при характеристике и прогнозировании важнейших свойств сложных каталитических систем эффективный прием конструирования алгоритмов для предсказания каталитического действия основан на одном из фундаментальных понятий теории систем — энтропии информации. Применение теории информации к каталитическим системам позволяет дать им универсальную характеристику в виде энтропии информации, открывающую возможность сравнивать между собой каталитические системы различных, в принципе любых типов. В частности, этот подход обеспечивает возможность предсказания свойств данной каталитической системы благодаря выбору тех типов систем, которые по своим возможностям наиболее содержательны для катализа и которые тем самым способны дать наибольшую информацию о свойствах катализаторов, например о характере их активных центров. При этом, как будет показано ниже, информационная энтропия, используемая для анализа атомных структур, оказывается более содержательной, чем обычная термодинамическая энтропия. [c.101]

    В работе [331 показано, что реакция дегидратации ряда насыш ен-ных алифатических спиртов С5—С, на окислах А1, Zr и Si хорошо описывается простейшим уравнением Тафта с сохранением литературных значений о. В то же время коэффициент чувствительности р для различных окислов меняется симбатно с теплотой адсорбции органических кислородсодержаш,их соединений, таких как диэтило-вый эфир, а также линейно связан с чувствительностью катализатора по отношению к отравлению пиридином. Это указывает на связь р с сорбционной характеристикой катализатора. Авторы работы подчеркивают, что при подборе катализаторов необходимо раздельно оценивать интенсивные (химические) и экстенсивные (число активных центров) свойства катализаторов. [c.160]

    Свойства катализаторов оцениваются рядом физико-химических и эмпирических характеристик. Индекс активности косвенно характеризует активность катализатора, он определяется как массовый выход бензина из стандартного сырья в стандартных условиях при крекинге на данном катализаторе. Для аморфных алюмосиликатных катализаторов с низким содержанием окиси алюминия он составляет обычно 32—36, для высокоглиноземистых (содержание АЬОз 25%) индекс активности несколько выше, для цеолитсодержащих он равен 48—52. Для катализаторов из природной глины индекс активности находится в пределах 20—30. Термическая ста- [c.214]

    Таким образом, появление стадии окислительной регенерации значительно усложняет технологические схемы и аппаратурное оформление процессов. Она существенно влияет на их экономику, а для каталитического крекинга даже определяет рентабельность и конкурентоспособность различных вариантов этого процесса. История создания и развития таких важных каталитических процессов нефтепереработки и нефтехимии, как крекинг, риформинг, дегидрирование, гидрокрекинг и гидроочистка неразрывно связана с решением проблем окислительной регенерации используемых катализаторов. Естественно, чт0 эта стадия привлекает к себе пристальное внимание исследователей уже не одно десятилетие. Результаты ранних исследований закономерностей окисления кокса обобщены в работе [2], опубликованной 20 лет назад. С тех пор в научной литературе накоплены новые сведения по теории и практике окислительной регенерации катализаторов и назрела необходимость систематизировать и обобщить имеющийся материал, рассмотреть в тесной взаимосвязи характеристики кокса, образующегося на катализаторах, механизм и кинетику его окисления изменение свойств катализаторов при регенерации, основы промышленной технологии и аппаратурного оформления процесса. [c.4]

    Таким образом, изменения структурных характеристик или размеров нанесенного на носитель активного компонента проявляются у всех катализаторов. Спекание может протекать по разным механизмам и в зависимости от условий регенерации и свойств катализатора может вызывать кристаллизацию вещества катализатора. В связи с этим при изучении спекания катализатора в конкретном процессе необходимо прежде всего выяснить, какой из возможных механизмов играет большую роль, что позволит наметить пути повышения стабильности катализатора. [c.62]

    Реакционная среда воздействует на состояние катализатора [2]. В отсутствие внешнедиффузионного торможения каждому стационарному составу газовой фазы, температуре поверхности катализатора и начальным условиям работы соответствует вполне определенное состояние катализатора с присущими ему составом, структурой, каталитическими свойствами. Это состояние, определяющее активность и избирательность стационарного каталитического процесса, не всегда оказывается оптимальным. Можно представить ситуацию, при которой нестационарные состояния катализатора, обусловленные, например, периодическим изменением в каком-либо интервале значений состава газовой среды, в среднем превосходят стационарное состояние по активности и избирательности. При этом чаще всего целесообразны сопоставления при одинаковых значениях концентраций как в стационарных условиях, так и в среднем — в нестационарных. Эффективность каталитического процесса в искусственно создаваемых нестационарных условиях зависит от его кинетических характеристик и динамических свойств поверхности катализатора. Поэтому полезно вначале обсудить динамические свойства катализатора, а затем перейти к вопросам, связанным с проведением каталитических процессов в нестационарных условиях. [c.8]


    Отличие IF от г в нестационарном режиме обусловлено динамическими свойствами катализатора, связанными с релаксационными характеристиками каталитического цикла и воздействием реакционной среды на катализатор. [c.17]

    Выражение (1.8), передавая основные динамические характеристики поверхности катализатора, сохраняет также его стационарные свойства — зависимость скорости реакции от состава и температуры газовой фазы, число стационарных состояний. Оно инвариантно относительно геометрических масштабов последующих уровней модели реактора и не зависит от люмента времени. В качестве информации о состоянии катализатора это феноменологическое описание входит в модель зерна, слоя катализатора или реактора в целом. [c.19]

    Нестационарные состояния приповерхностного слоя катализатора, вызывающие изменения констант скорости элементарных этапов. Эти изменения связаны с побочными взаимодействиями, не входящими в каталитический цикл. Как правило, энергии активации этих взаимодействий достаточно велики, а скорости малы, поэтому время релаксации побочных взаимодействий много больше времени релаксации в каталитическом цикле. В обоих случаях нестационарность определяется отклонением свойств катализатора от стационарных характеристик, отвечающих усредненным по времени значениям параметров газовой фазы. [c.28]

    Механические свойства катализатора во многом определяют стабильность его. Истирание, прочность на раздавливание, растрескивание при регенерации — вот неполный перечень характеристик, обусловливающих стабильность катализатора. [c.238]

    Н-катионит КУ-2, относящийся к монофункциональным сильнокислотным катионитам полимеризационного типа, наиболее часто используют в катализе [243]. По химическому составу это сульфированный полимер стирола с дивинилбензолом. Содержание последнего составляет 8%. Количество дивинилбензола в сополимере влияет как на условия получения катионита, так и на его свойства. При повышенном содержании дивинилбензола в исходном полимере получают иониты с пониженной набухаемостью. Последнее улучшает механические свойства катализатора, но ухудшает его кинетическую характеристику. [c.176]

    Для получения всесторонней информации о прочностных,-свойствах катализаторов помимо испытаний в статических условиях и на истирание рекомендуется оценивать их сопротивляемость к удару, раздроблению. Наиболее приемлемым для этого методом является разбивание гранул на наковальне при заданной энергии падающего бойка. В табл. 7.9 приведены результаты определения энергии разрушения гранул, являющейся характеристикой их сопротивляемости к динамическим нагрузкам. При этом — энергия разрушения цилиндрических гранул с плоскопараллельными основаниями (удар по торцу ), W oe — критическая величина энергии разрушения горизонтально расположенных образцов (удар по образующей ). [c.379]

    Узел реактора в каталитическом процессе часто состоит из нескольких параллельно работающих аппаратов. Может оказаться, что такие реакторы обладают разными характеристиками, в первую очередь вследствие возможного различия свойств катализатора. Это делает актуальной для действующего производства задачу оптимального распределения потоков между реакторами, к рассмотрению которой мы сейчас перейдем. [c.219]

    Оценка стабильности активности катализатора ускоренным лабораторным методом заключается в определении индекса активности и насыпного веса образца, подвергнутого 6-часовой обработке водяным паром при температуре 750 [369]. Дополнительно для более полной характеристики изменения свойств катализатора одновременно с величиной индекса активности определяют выход газа и остатка выше 200°, н % вес. на крекируемое сырье, и удельный вес газа. [c.811]

    Разнообразие в распределении температур по высоте зоны катализа затрудняет оценку преимуществ и недостатков температурных режимов и эффективности катализаторов. Сравнение эффективности действия катализатора возможно лишь в том случае, если на основе температурного графика неизотермического реактора рассчитать температуру, эквивалентную средней скорости процесса, проводимого в изотермических условиях, или, как еще ее можно назвать, эквивалентную изотермическую (кинетическую) температуру [9, 10]. Весьма важно также, что характер распределения температур в отдельных адиабатических зонах реакторного устройства зависит от свойств катализаторов и кинетических характеристик процесса. Так, по температурным кривым можно судить о численных значениях кажущихся энергий активации процессов, об активности катализаторов, а в некоторых случаях и о [c.32]

    Процесс сгорания топливовоздушной смеси в цилиндрах двигателей внутреннего сгорания с искровым зажиганием всегда сопровождается отложением нагара на головке поршня, стенках камеры сгорания, свечах зажигания и на клапанах. Отлагаю-шийся нагар на 70ч-75% состоит из углерода при применении неэтилированных бензинов или содержит 60+90% соединений свинца в случае использования этилированных бензинов [6]. Отложения нагара уменьшают отвод тепла из камеры сгорания и ее объем. Раскаленные частицы нагара могут вызвать неуправляемое воспламенение топливовоздушной смеси — калильное зажигание. Нагар обладает свойством катализатора ускорения предпламенных реакций. Нагар, отлагающийся на фасках выпускных клапанов, нарушает их герметичность и, как следствие, вызывает разрушение фасок и седел клапанов за счет прорыва раскаленных газов в такте рабочего хода. Отложения нагара на электродах свечей зажигания вызывают перебои в их работе, понижают энергию электрической искры. Последствия отложения нагара повышение требований двигателя к детонационной стойкости бензина (на несколько пунктов октанового числа), возникновение детонационного сгорания, увеличение удельного расхода топлива, снижение мощности двигателя и его перегрев, необходимость частой смены или чистки свечей зажигания, быстрый выход двигателя из строя вследствие прогара выпускных клапанов. Обеспечение минимального нагароотложения в камере сгорания является необходимым условием длительного сохранения высоких мощностных и экономических характеристик двигателем. [c.282]

    Электрохимические методы позволяют улавливать влияние объемных свойств катализатора на его поверхностные свойства, т. е. делать определенные выводы о соотношении объемных и поверхностных свойств в катализе. Любая добавка к катализатору, если она изменяет его объемные свойства, вызовет соответствующее изменение потенциала катализатора в ходе реакции. На данном этапе развития метода изменение потенциала катализатора позволяет судить не только о качественном характере влияния вводимых добавок, но устанавливать и количественные характеристики. Действие вводимых добавок прежде всего проявляется в изменении энергии связи реагирующих веществ с катализатором, что определяет изменение его потенциала. [c.184]

    Принцип энергетического соответствия является одним из факторов решения проблемы механизма избирательного действия катализаторов. Возникает проблема, почему одно и то же вещество с изменением условий реакции и природы катализатора реагирует в различных направлениях. Наиболее вероятно, что с изменением условий реакции и природы катализатора реагирующее вещество выступает в различных реакционных формах. Применительно к катализу это означает, что в зависимости от свойств катализатора, различной ориентации молекул на поверхности генерируются различные реакционные формы активируемых молекул. При этом на первый план выступают факторы структурного соответствия, обусловливающие возможность различной ориентации молекулы с изменением природы реагирующих связей. Это, в свою очередь, приводит к необходимости включения в мультиплетный комплекс и различных атомов поверхности катализатора, отличающихся межатомными расстояниями и, следовательно, энергетическими характеристиками. [c.209]

    Строго разграничивать катализаторы по механизму их действия нельзя. На одном и том же катализаторе процесс может осуществляться как по электронному механизму, так и ио радикальному. Возможны процессы, когда одна стадия реакции будет проходить по ион-радикальному механизму, а вторая — по радикальному. Механизм процесса будет определяться взаимной относительной )еакционной способностью катализатора и реагирующих веществ. Направление процесса зависит от того, какой механизм — радикальный или ион-радикальный — будет энергетически выгоднее с учетом природы катализатора и реагирующих веществ в данных условиях. Поэтому далеко не всегда можно ожидать прямой зависимости между каталитической активностью и электронными характеристиками катализатора. Решение этого вопроса осложняется еще и тем, что сами электронные характеристики не являются постоянными величинами. Они, в первую очередь, определяются соотношением и взаимным влиянием поверхностных и объемных свойств катализаторов, широко меняются в процессе их приготовления и в зависимости от условий реакции. Соотношение и взаимное влияние поверхностных и объемных свойств катализаторов — это второе направление, по которому должно пойти объединение существующих теорий катализа в единую теорию. [c.210]

    Однако, вероятно, самым важным из уникальных свойств радиационных процессов является действие радиации на твердые вещества. Это свойств представляет большой интерес для технологии нефтепереработки в связи с возможностью использования радиации для изменения структуры и характеристик твердых катализаторов. Каталитические свойства твердых теп в некоторой стенени зависят от их электронных и физических свойств. Кристаллическая структура, дислокации, вакантные места или дефекты в структурной решетке и между слоями решетки играют весьма важную роль в химии твердого состояния [26]. Кроме того, по мнению многих исследователей, подвижность электронов в решетке или электронные свойства катализаторов дают важный ключ к пониманию характеристик катализаторов [И]. Поскольку на эти физические и электронные изменения в твердых телах требуется значительно меньшая затрата энергии чем 10 эв, радиоактивные излучения обладают достаточной энергией для того, чтобы вызывать их. Следовательно, они могут влиять на каталитические свойства твердых веществ. [c.120]

    Каталитические свойства катализаторов в гетерогенном катализаторе весьма тесно связаны с подвижностью атомов на поверхности катализатора. Данные о подвижности могут быть получены с помощью изотопных методов. Если катализаторами являются окислы металлов, с помощью 0 можно изучать обмен между молекулярным кислородом и кислородом окислов. Характеристики обмена в данном случае весьма тесно связаны с каталитическими свойствами Катализаторов. Промотирование катализаторов, повышающее их активность, ведет одновременно и к повышению скорости обмена, а также к понижению температуры начала обмена. [c.185]

    Выбор системы пылеочистки должен базироваться на комплексном рассмотрении всего технологического процесса. Предопределенные технологией каталитического крекинга методы снижения расхода катализатора путем его извлечения из контактных газов в аппаратах технологической пылеочистки и принудительного возврата в реакционную систему устанавливают взаимно однозначное соответствие между фракционным составом катализатора в системе, скоростью его уноса из псевдосжиженного слоя, интенсивностью истирания и весовой скоростью потерь. На балансовые показатели процесса каталитического крекинга и систем пылеулавливания значительное влияние оказывают свойства катализатора. Поэтому при расчете систем пылеулавливания необходимо учитывать различия в физико-механических характеристиках рабочих и поступающих на установку катализаторов. [c.263]

    Химические основы процесса. Характеристики продуктов гидрокрекинга в очень сильной степени определяются свойствами катализатора — его гидрирующей и кислотной активностью. Катализаторы гидрокрекинга можно разделить на имеющие высокую гидрирующую и относительно низкую кислотную активность и имещие относительно невысокую гидрирующую и высокую кислотную активность. [c.380]

    Состав и выход продуктов каталитического крекинга зависят от характеристики сырья, свойств катализаторов (их активности и селективности), температурного режима в аппарате, кратности циркуляции катализатора и типа установки. [c.75]

    В тех случаях, когда коэфициенты р в уравнениях (2) и (3) изменяются с температурой и на разных образцах катализаторов или сырья получаются не одинаковыми, судить об активности ката . 1заторо8 и способности сырья к расщеплению по константам уже нельзя. В этих условиях достаточно простое и точное опрэделение относительных активностей катализаторов и способности сырья к расщеплению дает отношение объемных скоростей, при которых на сравниваемых катализаторах или образцах сырья достигается одинаковая степень превращений в одних и тех же температурных условиях. Однако указанное отношение непостоянно и может изменяться с углублением процесса. Для полной характеристики свойств катализаторов в этих случаях целесообразно строить несколько кинетических изотерм (например, для трех или четырех температур) и, пользуясь ими, находить относительные активности для нужных условий и, кроме того, температурные коэфициенты, пользуясь графическим методом [26, 27]. [c.132]

    В промышленных условиях активность катализатора практически любого нефтехимического гетерогенно-каталитического процесса со временем уменьшается вследствие образования коксовых отложений на активной поверхности. Для восстановления основнь1х характеристик закоксованные катализаторы периодически подвергают окислительной регенерации. Окислительная регенерация закоксованных катализаторов представляет собой совокупность химических реакций, протекающих при взаимодействии кислорода с коксом и приводящих к его удалению с активной поверхности катализатора в виде газообразных продуктов окисления. Физико-химические закономерности этих реакций определяются количеством и способностью кокса к окислению, составом газовой фазы, температурой и свойствами поверхности, на которой происходит окисление. [c.68]

    Гетерогенный реактор с твердыми частицами катализатора -это динамическая система, в которой в просфанстве и во времени объединены сложные физико-химические процессы, происходящие на поверхности и внутри пористого катализатора, внутри и на фаницах реакционного объема в целом. В стационарном режиме все потоки объединены материальными и энергетическими балансами. Поэтому редко удается организовать каталитический процесс так, чтобы все его уровни - от поверхности катализатора до контактного отделения - работали в режиме, соответствующем оптимальному. Например, состав, сфуктура и свойства катализатора определяются состоянием газовой фазы. Следовательно, повлиять существенно на характеристики катализатора, работающего в стационарных условиях, не представляется возможным, так как состав газовой фазы предопределен степенью превращения и избирательностью. В нестационарном режиме, оказывается, можно так периодически изменять состав газовой фазы или таким образом периодически активировать катализатор, что его состояние будет значительно [c.304]

    Когда говорят о типах катализаторов, используемых для данной реакции гидрирования, обычно указывают только, что катализатор никелевый или из благородного металла можно сказать, что катализатор принадлежит к группе железа. Однако все эти термины дают весьма неоднозначное описание, в котором соседствуют дезинформация и правда. Например, катализатором группы железа может быть никель, железо или кобальт, причем в одной или нескольких различных формах. Как правило, это нанесенные катализаторы, т. е. полученные осаждением металла на носитель или пропиткой его раствором соли металла. В качестве носителей чаще используют инфузорную землю (кизельгур), порошкообразные оксид кремния и активированный уголь, оксиды магния и редкоземельных элементов, оксид алюминия или молекулярные сита. (Существует много типов окспда алюминия, и каждый из них оказывает свое положительное или отрицательное влияние на получающийся катализатор.) В задачу данной главы не входит описание приготовления катализаторов, которое слишком сложно. Отметим только, что, называя катализатор никелевым, мы не даем ему адекватной характеристики. Даже если назван носитель, то еще нельзя определить, как будет работать катализатор. Свойства катализатора сильно зависят от способа его приготовления, типа носителя, наличия промоторов, введенных сознательно или случайно попавших при осаждении. Способы восстановления и стабилизации катализатора также могут оказать решающее воздействие на его эксплуатационные характеристики, в том числе на активность и селективность. [c.108]

    Динамические характеристики. Из-за внешних воздействий и (или) изменений внутренних свойств катализатора и реактора в целом температурные и концентрационные поля в слое катализатора меняются во времени. При этом, как было показано, те параметры, влияние которых в стационарном режиме можно было не учитывать, часто оказываются существенными в нестационарном процессе. К таким параметрам можно отнести, например, дисперсию вещества вдоль слоя катализатора, массоемкость и теплоемкость слоя, неравподоступность наружной поверхности зерна, внешний тепло- и массообмен. В стационарном режиме значительное число факторов воздействует на состояние системы независимо и часто аддитивно. Это позволяет использовать более узкие модели и эффективные параметры, отражающие суммарное влияние этих факторов. В нестационарном режиме степень влияния этих же факторов может быть иной и, кроме того, сильно зависеть от состояния системы. Р1х влияние необходимо учитывать порознь. Так, например, дисперсию тепла вдоль адиабатически работающего слоя катализатора в стационарном режиме вполне достаточно представить коэффициентом эффективной продольной теплопроводности. В нестационарном режиме это недопустимо — необходимо учитывать раздельно перенос тепла по скелету катализатора, теплообмен между реакционной смесью и наружной поверхностью зерна и иногда перенос тепла внутри пористого зерна. Из-за инерционных свойств в нестационарном режиме имеют место большие, чем в стационарном, градиенты температур и концентраций на зерне и в слое катализатора. Это приводит, иапример, к отсутствию пропорциональной зависимости между температурой и степенью превращения, непродолжительному, но большому перегреву у поверхности зерна с наилучшими условиями обмена, значительным перегревам слоя — динамическим забросам, на-Л1Н0Г0 превышающим стационарные перепады температур между входом и выходом из слоя могут быть в несколько раз больше адиабатического разогрева при полной степени превращения. Сдвиг по фазе между температурными и концентрационными полями иногда приводит к возникновению колебательных пере- [c.13]

    Нестапионарность катализатора. Под воздействием изменяющегося состава реакционной среды катализатор не остается неизменным. Помимо химических стадий взаимодействия реагирующих веществ имеют место физические процессы на поверхности (перенос реагирующих веществ между различными центрами, поверхностная диффузия адсорбированных атомов и молекул, растворение и диффузня в твердом теле веществ — участников реакции, структурные и фазовые превращения) [30, 31, 32]. Не-стационарность состава катализатора весьма своеобразно ирояв-ляется в кипящем слое, где частицы непрерывно перемещаются в поле переменных концеитрации. При этом каждая частица в отдельности непрерывно изменяет свои каталитические свойства, никогда не приходя в равновесне с окружающей реакционной средой. Хотя усредненные за достаточно большой период времени свойства катализатора остаются неизменными и реактор в целом работает стационарно, его выходные характеристики могут существенно отличаться от рассчитанных с исиользованием стационарных кинетических уравнений. Для построения нестационарной кинетики каталитического процесса необходимо выявить параметры состояния катализатора, определяющие скорость реакции, закономерности их изменения под воздействием реакционной смеси, разработать методы измерения пли расчета этих параметров в ходе нестационарного эксперимента. Не меньшие трудности возникают при разработке и решении математической модели, отражающей изменение параметров состояния по глубине пленки активной массы в зерне, случайно перемещающемся по высоте слоя. [c.62]

    После термообработки в присутствии металлов зависимость качества катализатора (удельной поверхности, объема пор, обменной способности) от температуры изменяется. Увеличение температуры прокалкп с 550 до 700 °С практически не влияет на перечисленные выше характеристики исходного катализатора. Резкое изменение наблюдается при повышении температуры с 850 до 900 °С. При наличии металлов на поверхности катализатора изменение его качества начинается уже с 800 °С. Абсолютные значения физико-химических свойств для исходного катализатора и для образцов, содержащих металлы, при одинаковых условиях прокалки существенно разнятся. Так, поверхность образца, содержащего 0,66% кобальта, при температуре прокалки 900 °С составляет всего 96 м /г, т. е. на 52% меньше, чем удельная поверхность исходного катализатора, прокаленного при этой же температуре. Объем пор их уменьшился на 44%. [c.144]

    Кроме оптимально подобранного химическ010 состав ЦЩХ1Ы, при котором достигается удовлетворительный прог ес(. таблетирования, ключевым параметром, определяющим основ ные свойства катализатора, является коэффициент прессования щихты. От данного параметра, прежде всего, зависят механическая прочность, норовая структура, активность, стабильность свойств и другие характеристики получаемых таблеток. [c.139]

    Наиболее удачно в настоящее время объясняет электрокаталитические эффекты предположение о полифункциональных свойствах катализаторов, промотированных адатомами. Модификация поверхности приводит к изменению ее адсорбционных характеристик по отношению как к органическим частицам, так и к частицам, образующимся в результате разряда ионов раствора или молекул воды (Н, ОН, О и др.). Адатомы могут явиться центрами, на которых появляются активные формы кислорода (например, частицы ОНадс), участвующие в медленной стадии процессов электроокнсления. В присутствии адатомов может затрудняться получение прочно хемосорбированных частиц, ингибирующих токоопределяющую реакцию, вследствие того, что эти частицы тре- буют для своего образования нескольких адсорбционных центров. Кроме того, модификация поверхности приводит и к изменению свойств поверхностных атомов самого катализатора из-за сильной связи с адатомами (лиганд-эффект). [c.300]

    За рубежом разработаны и выпускаются в промышленном масштабе катализаторы на основе активной окиси цинка G-72 (фирма Gerdler) 29-1 29-2 и 32-4 (фирма I I) G-7-1 (фирма I) B-ZnO (фирма BASF) ZnO (фирма ONIA) и др. [1, 10, 101, 102]. Характеристика указанных катализаторов и их некоторые физико-хими-ческие и адсорбционные свойства приведены в табл. V-6. Для сравнения здесь же помещены данные по отечественным поглотителям ГИАП-10 и ГИАП-10-2 на основе окиси цинка. [c.312]

    Г етерогенные катализаторы должны удовлетворять определенным требованиям технологии каталитического ппоиесса. основные из которых следующие 1) высокая каталитическая активность 2) достаточно большая селективность (избирательность) в отношении целевой реакции 3) высокая механическая прочность к сжатию, удару и истиранию 4) достаточная стабильность всех свойств катализатора на протяжении его службы и способность к их восстановлению при том или ином методе регенерации 5) простота получения, обеспечивающая воспроизводимость всех свойств катализатора 6) оптимальные форма и геометрические размеры, обусловливающие гидродинамические характеристики реактора 7) небольшие экономические затраты на производство катализатора. Обеспечение этих требований достигается главным образом при разработке состава и способа получения катализатора. [c.417]

    Более полное описание механизма и количественных характеристик каталитических волн было сделано С. Г. Майрановским, который подробно исследовал зависимость величины предельного каталитического тока от концентрации и протонодо-норной активности донора и свойств катализатора в широких интервалах концентраций и показал, что образование каталитических волн водорода связано с предшествующими каталитическими реакциями, стадией переноса электронов и бимолекулярным взаимодействием продуктов электродной реакции [10]. Появление волн, обусловленных каталитическим выделением водорода, вызывается способностью органических молекул присоединять на первой стадии водород с образованием ониевых соединений [c.23]


Смотреть страницы где упоминается термин Характеристика и свойства катализаторов: [c.6]    [c.149]    [c.79]    [c.124]    [c.130]    [c.279]   
Смотреть главы в:

Каталитические процессы в нефтепереработке Издание 2 -> Характеристика и свойства катализаторов

Каталитические процессы в нефтепереработке Издание 2 -> Характеристика и свойства катализаторов




ПОИСК







© 2025 chem21.info Реклама на сайте